Зеленая энергия для дома. Виды альтернативных источников энергии

Сегодня мы поговорим про автономное электричество, какое оно бывает, как оборудовать дом таким источником электроэнергии, как проводить подбор оптимальных систем. И самое главное, «стоит ли овчинка выделки».

Особенности подключения к сетям ЛЭП

Без электричества сейчас трудно представить комфортабельное жилье. Благодаря ему жилище освещается, обогревается, выполняется готовка пища, и нагрев воды. Вот только далеко не всегда есть возможность обеспечить электричеством жилье, особенно если дом находится далеко от города.

Многим владельцам загородных домов и дачных участков, особенно если они находятся далеко от цивилизации, приходится решать вопрос с энергообеспечением дома.

Самым распространенным решением является подключение дома к сетям ЛЭП, однако они далеко не везде имеются или же ближайшая линия находится на приличном удалении от дома.

В таком случае обеспечение электричеством дома может оказаться очень дорогим удовольствием. Ведь придется согласовывать вопросы по поставкам этого источника энергии с соответствующими органами, оплачивать установку подстанции и опор ЛЭП для подведения к дому.

И особенно неприятно то, что приобретаемое оборудование, причем за немалые деньги (подстанция, провода, опоры) перейдут на баланс местных энергосетей, то есть владельцем всего будут являться они, а владельцу дома еще придется и платить за поставки электроэнергии.

Поэтому такой вариант для многих может стать нецелесообразным, достаточно хлопотным и дорогостоящим.

Автономные источники электроэнергии

Второй вариант обеспечить загородный дом электричеством – использовать автономные источники энергообеспечения. Такими источниками могут стать ветер, солнце, вода и горючие материалы.

Используя автономное энергообеспечение, владелец дома становится полностью независимым в плане получения электроэнергии для потребления.

Не требуется никаких согласований, протяжки ЛЭП и т. д. Конечно, получение электроэнергии все равно будет связано затратами. И на начальном этапе они будут достаточно весомыми, поскольку необходимое оборудование стоит немало.

В дальнейшем необходимо еще и проведение обслуживания всех составляющих системы энергообеспечения, но в итоге все окупиться.

Коротко рассмотрим самые распространенные автономные источники электроэнергии.

Солнечные панели

Сейчас все большую популярность завоевывают . Суть такого источника проста – имеются полупроводниковые фотоэлементы, в которых при попадании на них солнечных лучей генерируется электрический заряд.

Количество вырабатываемой энергии напрямую зависит от площади фотоэлементов, поэтому они собираются в панели.

Панель площадью в 1 м. кв. способна выдать 100 Ватт мощности с напряжением 20-25 В.

Чтобы полностью обеспечить дом электричеством площадь панелей должна быть значительной.

Из положительных качеств такого источника электроэнергии является его долговечность, полная экологичность, бесшумность.

Панели требуют минимум обслуживания, а электроэнергия, выработанная ими, является полностью бесплатной и доступной.

Но есть и недостатки. Для обеспечения электроэнергии в необходимом количестве, площадь панелей может достигать значительных размеров, которые еще нужно и правильно расположить.

Энергия эта непостоянна. В солнечные дни панели будут работать с максимальным выходом, но бывают же и пасмурные дни. Поэтому общее количество выработанной электрической энергии зависит от того, сколько солнечных дней в году в регионе, где располагается дом.

Еще один недостаток, причем весомый – это стоимость панелей. Цена за каждый Ватт выработанной энергии составляет сейчас примерно 1,5 $, то есть только за панели, вырабатывающие 1 кВт электроэнергии, придется выложить 1,5 тыс. долларов. А еще потребуется покупать и остальное оборудование, необходимое для работы системы.

Ветроэлектрические установки

Вторая по популярности автономная система энергообеспечения – ветряная. Для получения электроэнергии используются ветрогенераторы.

По сути, это обычные генераторы, на ротор которых надеты лопасти. За счет ветра ротор вращается и происходит генерация электричества.

Из положительных качеств ветрогенераторов отмечается достаточно компактные размеры, относительная бесшумность работы, экологичность, долговечность. Также существует возможность самодельного изготовления такого генератора.

Но недостатков у ветряной системы больше. Первый из них – стоимость, обойдутся ветряные генераторы не дешево.

Учитывая то, что КПД ветрогенераторов невысокая, то для полного обеспечения дома электричеством, потребуется установка трех и более ветряков небольшой мощности или же одного, но достаточно производительного. И в обоих случаях затраты на приобретение будут значительными.

Опять же необходимо учитывать и климатические условия. В зонах, где средний годовой показатель скорости ветра не превышает 8 м/с, использовать ветрогенераторы будет нецелесообразно, поскольку они неспособны будут работать в оптимальном режиме.

Стоит также учитывать, что в дни полнейшего безветрия можно остаться без электричества, поэтому использовать ветряную автономную систему энергообеспечения лучше, если имеется резервный источник электроэнергии.

Топливные генераторные установки

Резервным источником электроэнергии могут стать генераторы, работающие на жидком или газообразном топливе (бензин, дизтопливо, газ).

Здесь все просто: установка состоит из двигателя внутреннего сгорания и генератора. Двигатель вращает ротор, и генератор вырабатывает энергию.

Полностью автономной такую систему назвать нельзя, все-таки необходимо топливо, которое еще и дорожает постоянно. Но как резервный источник электроэнергии такие генераторные установки являются самыми оптимальными.

В случае, когда пасмурная погода стоит уже несколько дней или же наблюдается безветрие, всегда можно запустить генераторную установку для восполнения заряда батарей.

Из положительных качеств генераторных установок, работающих от топлива, отмечается постоянная доступность электроэнергии, такие установки сравнительно дешевые, они обеспечивают хороший выход энергии.

К недостаткам же их относится потребность в топливе, что обеспечивает постоянные затраты. Такие установки не могут работать длительный период, а двигатели внутреннего сгорания требуют технического обслуживания.

Также для использования генераторных установок необходимо отведение отдельного помещения и организацию отвода выхлопных газов, ну и, естественно, ни о какой экологичности и речи быть не может.

Гидроэлектростанции

Реже всего в качестве автономного источника питания используется гидроэлектростанция по одной простой причине, далеко не у всех возле дома протекает река или мощный ручей.

Суть работы такой станции сводится к тому, что текущая вода вращает лопасти турбины, за счет чего в генератор вырабатывает электричество.

Положительные качества гидростанций таковы: стабильная подача энергии круглосуточно, поскольку вода в реке или ручье не замедляет скорость движения. Такие станции полностью экологичны, долговечны и практически не требуют обслуживания.

Главным же их недостатком является необходимость установки на берегу реки или возле ручья. При этом скорость движения воды должна быть высокая.

Гидростанция способна вырабатывать энергию и при медленном движении воды, но в таком случае река зимой будет покрываться льдом, и использовать станцию уже не получиться.

Большая же скорость воды будет являться гарантией того, что река или ручей не перемерзнут. Второй недостаток – стоимость станции.

И все же концепция обеспечения дома автономной системой энергообеспечения является перспективной и многие ею интересуются.

Выше мы рассмотрели основные виды источников электричества, но их одних недостаточно, чтобы в доме была электроэнергия.

Дополнительно стоит отметить, что эффективность любой автономной системы зависит от правильности расчетов.

Особенности установки и эксплуатации автономных источников

Перед тем как приобретать и устанавливать любую из систем, нужно правильно произвести все необходимые расчеты ведь со временем количество потребителей электроэнергии в доме может увеличиться, к примеру вы решите установить и это нужно учесть в расчетах.

Рассмотрим для начала на примере солнечной системы.

Солнечная автономная система.

Все расчеты нужно начинать с подсчетов суммарного потребления электроэнергии в доме, то есть подсчитать мощность всех потребителей. При этом важно их разделить.

Дело в том, что часть потребителей электроэнергии без проблем работают от сети с постоянным током и напряжением в 12 или 24 В. Такими потребителями могут быть те же светодиодные лампы, которые лучше установить вместо обычных ламп накаливания. Да и вообще, все работы следует начинать с оснащения дома экономичными потребителями электроэнергии.

Исходя из суммарной мощности потребления тока, производится подбор аккумуляторных батарей и инвертора. И только после этого переходят к подсчету количества солнечных панелей, а также подбора контроллера.

Можно и не заниматься вычислением площади солнечных панелей, емкостью АКБ и инвертора.

Многие производители предлагают уже готовые комплекты, включающие все необходимое оборудование. При приобретении такого комплекта достаточно знать только суммарное потребление электроэнергии.

Причем при выборе комплекта важно учитывать, чтобы у него имелся некий запас по мощности, чтобы вся система не работала на предельных значениях. Общая стоимость такой системы во многом зависит от ее мощности.

Подводим итог

Автономное электричество в доме является достаточно интересным решением. Но стоимость его пока достаточно высока, поэтому не всем будет по карману.

Но с другой стороны, при отсутствии подключения к промышленным ЛЭП, и больших расстояниях до цивилизации, лучше все же потратиться на автономное энергообеспечение, чем протянуть новую линию. Но в каждом отдельном случае хозяин дома принимает решение сам.

Ограниченные запасы ископаемого топлива и глобальное загрязнение окружающей среды заставило человечество искать возобновляемые альтернативные источники такой энергии, чтобы вред от ее переработки был минимальным при приемлемых показателях себестоимости производства, переработки и транспортировки энергоресурсов.

Современные технологии позволяют использовать имеющиеся альтернативные энергетические ресурсы, как в масштабе целой планеты, так и в пределах энергосети квартиры или частного дома.

Буйное развитие жизни на протяжении нескольких миллиардов лет наглядно доказывает обеспеченность Земли источниками энергии. Солнечный свет, тепло недр и химический потенциал позволяют живым организмам осуществлять множественные энергетические обмены, существуя в среде, созданной физическими факторами – температурой, давлением, влажностью, химическим составом.


Круговорот веществ и энергии в природе

Экономические критерии альтернативных источников энергии

Человек издревле использовал энергию ветра как движитель для кораблей, что позволяло развиваться торговле. Возобновляемое топливо из отмерших растений и отходов жизнедеятельности было источником тепла для приготовления пищи и получения первых металлов. Энергия перепада воды приводила в действие мельничные жернова. На протяжении тысячелетий это были основные виды энергии, которые мы теперь называем альтернативными источниками.

С развитием геологии и технологий добычи недр стало экономически выгодней добывать углеводороды и сжигать их для получения энергии по мере необходимости, чем ждать у моря погоды в буквальном смысле, надеясь на удачное совпадение течений, направления ветра, облачности.

Нестабильность и изменчивость погодных условий, а также относительная дешевизна двигателей, работающих на ископаемом топливе, заставили прогресс развиваться по пути использования энергии недр земли.


Диаграмма, демонстрирующая соотношение потребления ископаемых и возобновляемых источников энергии

Усвоенный и переработанный живыми организмами углекислый газ, покоившийся в недрах миллионы лет, снова возвращается в атмосферу при сжигании ископаемых углеводородов, что является источником парникового эффекта и глобального потепления. Благополучие будущих поколений и хрупкое равновесие экосистемы заставляют человечество пересмотреть экономические показатели и использовать альтернативные виды энергии , ведь здоровье дороже всего.

Сознательное использование возобновляемых природой альтернативных источников энергии становится популярным, но, как и прежде, преобладают экономические приоритеты. Но в условиях загородного дома или на даче использование источников альтернативного электричества и тепла может оказаться единственным экономически выгодным вариантом получения энергии, если проведение, подключение и установка линий энергоснабжения окажется слишком дорогой затеей.


Обеспечение удаленного от цивилизации дома минимально необходимым объемом электроэнергии с помощью солнечных панелей и ветрогенератора

Возможности использования альтернативных видов энергии

Пока ученые исследуют новые направления и разрабатывают технологии холодного термоядерного синтеза, домашние мастера могут использовать следующие альтернативные источники энергии для дома:

  • Солнечный свет;
  • Энергия ветра;
  • Биологический газ;
  • Разница температур;

По данным альтернативным видам возобновляемой энергии существуют готовые решения, успешно внедренные в массовое производство. Например – солнечные батареи, ветрогенераторы, биогазовые установки и тепловые насосы различной мощности можно приобрести вместе с доставкой и установкой, чтобы иметь свои альтернативные источники электричества и тепловой энергии для частного дома.


Промышленно выпускаемая солнечная панель, установленная на крыше частного дома

В каждом отдельном случае должен быть свой собственный план обеспечения домашних электроприборов источниками альтернативной электрической энергии, согласно потребностей и возможностей. Например, для питания ноутбука, планшета, зарядки телефона можно использовать источник напряжением 12 В., и переносные адаптеры. Данного напряжения, при достаточном объеме аккумулятора энергии будет достаточно для освещения при помощи .

Солнечные батареи и ветрогенераторы должны заряжать аккумуляторы, ввиду непостоянства освещения и силы энергии ветра. С увеличением мощности альтернативных источников электричества и объема аккумуляторов возрастает энергетическая независимость автономного энергоснабжения. Если требуется подключить к альтернативному источнику электричества электроприборы, работающие от 220 В., то применяют преобразователи напряжения .


Схема, иллюстрирующая питание домашних электроприборов от аккумуляторов, заряжаемых ветрогенератором и солнечными панелями

Альтернативная энергия солнечного излучения

В домашних условиях практически невозможно создать фотоэлементы, поэтому конструкторы альтернативных источников энергии используют готовые комплектующие, собирая генерирующие конструкции, добиваясь необходимой мощности. Соединение фотоэлементов последовательно увеличивает выходное напряжение полученного источника электричества, а подключение собранных цепочек параллельно дает больший суммарный ток сборки.


Схема подключения фотоэлементов в сборке

Ориентироваться можно на интенсивность энергии солнечного излучения – это примерно один киловатт на квадратный метр. Также нужно учитывать коэффициент полезного действия солнечных батарей – на данный момент это приблизительно 14%, но ведутся интенсивные разработки для увеличения КПД солнечных генераторов. Выходная мощность зависит от интенсивности излучения и угла падения лучей.

Можно начать с малого – приобрести одну или несколько небольших солнечных батарей, и иметь источник альтернативного электричества на даче в объеме, необходимом для зарядки смартфона или ноутбука, чтобы иметь доступ к глобальной сети интернет. Замеряя ток и напряжение, изучают объемы потребления энергии, обдумывая перспективу дальнейшего расширения использования источников альтернативной электроэнергии.


Установка дополнительных солнечных батарей на крыше дома

Нужно помнить, что солнечный свет также является источником теплового (инфракрасного) излучения, которое может использоваться для нагрева теплоносителя без дальнейшего преобразования энергии в электричество. Данный альтернативный принцип применяется в солнечных коллекторах , где при помощи отражателей инфракрасное излучение концентрируется и передается теплоносителем в систему отопления.


Солнечный коллектор в составе домашней системы отопления

Альтернативная энергия ветра

Простейший путь для самостоятельного создания ветрогенератора – это использовать автомобильный генератор. Для увеличения оборотов и напряжения источника альтернативного электричества (эффективности генерации электрической энергии) следует применить редуктор или ременную передачу. Объяснение всевозможных технологических нюансов выходит за рамки данной статьи – нужно изучать принципы аэродинамики, чтобы понять процесс преобразования скорости потока воздушных масс в альтернативное электричество.

На начальном этапе изучения перспектив преобразования возобновляемых источников альтернативной энергии ветра в электричество, нужно выбрать конструкцию ветряка. Наиболее распространенные конструкции – это лопастной винт с горизонтальной осью, ротор Савониуса, и турбина Дарье. Лопастной винт с тремя лопастями в качестве источника альтернативной энергии – наиболее распространенный вариант для самодельного изготовления.


Разновидности турбин Дарье

При проектировании лопастей винтов большое значение имеет угловая скорость вращения ветряка. Существует так называемый фактор эффективности винта, который зависит от скорости воздушного потока, а также длины, сечения, количества и угла атаки лопастей.

Обобщенно данную концепцию можно понять так – при малом ветре длины лопасти с самым удачным углом атаки будет недостаточно для достижения максимальной эффективности генерации энергии, но с многократным усилением потока и увеличением угловой скорости кромки лопастей будут испытывать чрезмерное сопротивление, которое может их повредить.


Сложный профиль лопасти ветряка

Поэтому длину лопастей рассчитывают исходя из средней скорости ветра, плавно изменяя угол атаки относительно удаления от центра винта. Для предотвращения поломки лопастей при ураганном ветре выводы генератора замыкают накоротко, что препятствует вращению винта. Для приблизительных расчетов можно принимать один киловатт альтернативной электроэнергии от трехлопастного винта диаметром 3 метра при средней скорости ветра 10м/с.


Для создания оптимального профиля лопасти потребуется компьютерное моделирование и ЧПУ станок. В домашних условиях мастера используют подручные материалы и инструменты, стараясь максимально точно воссоздать чертежи альтернативных источников ветровой энергии. В качестве материалов используется дерево, метал, пластик и т.д.


Самодельный винт ветрогенератора, сделанный из дерева и металлической пластины

Для генерации электричества мощности автомобильного генератора может оказаться недостаточно, поэтому мастера своими руками изготавливают генерирующие электрические машины, или переделывают электродвигатели. Наиболее популярная конструкция источника альтернативного электричества – ротор с попеременно размещенными неодимовыми магнитами и статором с обмотками.


Роторы самодельного генератора
Статор с обмотками для самодельного генератора

Альтернативная энергия биогаза

Биологический газ в качестве источника энергии получают в основном двумя способами – это пиролиз и анаэробное (без доступа кислорода) разложение органических веществ. Для пиролиза требуется лимитированная подача кислорода, необходимая для поддержания температуры реакции, при этом выделяются горючие газы: метан, водород, угарный газ и другие соединения: углекислый газ, уксусная кислота, вода, зольные остатки. В качестве источника для пиролиза лучше всего подходит топливо с большим содержанием смол. На видео ниже показана наглядная демонстрация выделения горючих газов из древесины при нагреве.


Для синтеза биогаза из отходов жизнедеятельности организмов применяются метантанки различных конструкций. Устанавливать метантанк дома своими руками имеет смысл при наличии в домашнем хозяйстве курятника, свинарника и поголовья крупного рогатого скота. Основной газ на выходе – метан, но большое количество примеси сероводорода и других органических соединений требует применения систем очищения для удаления запаха и предотвращения засорения горелок в тепловых генераторах или загрязнения топливных трактов двигателя.

Нужно основательное изучение энергии химических процессов, технологий с постепенным набором опыта, пройдя путь проб и ошибок, чтобы получить на выходе источника горючий биологический газ приемлемого качества.

Независимо от происхождения, после очистки смесь газов подается в теплогенератор (котел, печь, конфорка плиты) или в карбюратор бензинового генератора, — такими способами получается полноценная альтернативная энергия своими руками. При достаточной мощности газогенераторов возможно не только обеспечение дома альтернативной энергией, но и обеспечивается работа небольшого производства, как показано на видео:

Тепловые машины для экономии и получения альтернативной энергии

Тепловые насосы широко применяются в холодильниках и кондиционерах. Было замечено, для перемещения тепла требуется в несколько раз меньше энергии, чем для его генерации. Поэтому студеная вода из скважины имеет тепловой потенциал относительно морозной погоды. Понижая температуру проточной воды из скважины или из глубин незамерзающего озера, тепловые насосы отбирают тепло и передают его в систему отопления, при этом достигается значительная экономия электричества.


Экономия электроэнергии с помощью теплового насоса

Другой тип тепловой машины – двигатель Стирлинга, работающий от энергии разницы температур в замкнутой системе цилиндров и поршней, размещенных на коленчатом вале под углом 90º. Вращение коленвала может использоваться для генерации электричества. В сети имеется множество материалов из проверенных источников, подробно объясняющих принцип действия двигателя Стирлинга, и даже приводятся примеры самодельных конструкций, как на видео ниже:


К сожалению, домашние условия не позволяют создать двигатель Стирлинга с параметрами выхода энергии выше, чем у забавной игрушки или демонстрационного стенда. Для получения приемлемой мощности и экономичности требуется, чтобы рабочий газ (водород или гелий) был под большим давлением (200 атмосфер и больше). Подобные тепловые машины уже используются в солнечных и геотермальных электростанциях и начинают внедряться в частный сектор.


Двигатель Стирлинга в фокусе параболического зеркала

Чтобы получить максимально стабильное и независимое электричество на даче или в частном доме потребуется совмещения нескольких альтернативных источников энергии.

Новаторские идеи по созданию альтернативных источников энергии

Целиком и полностью охватить весь спектр возможностей возобновляемой альтернативной энергетики не сможет ни один знаток. Альтернативные источники энергии имеются буквально в каждой живой клетке. Например, водоросль хлореллы давно известна как источник белков в корме для рыб.

Ставятся опыты по выращиванию хлореллы в невесомости, для применения в качестве пищи космонавтов при дальних космических перелетах в будущем. Энергетический потенциал водорослей и других простых организмов изучается для синтеза горючих углеводородов.


Аккумулирование солнечного света в живых клетках хлореллы, выращиваемой в промышленных установках

Нужно иметь в виду, что преобразователя и аккумулятора энергии солнечного света лучшего, чем фторопласт живой клетки пока не придумано. Поэтому потенциальные возобновляемые источники альтернативного электричества имеются в каждом зеленом листе, осуществляющем фотосинтез .

Основная сложность состоит в том, чтобы собрать органический материал, при помощи химических и физических процессов достать оттуда энергию и преобразовать ее в электричество. Уже сейчас большие площади аграрных земель отводятся под выращивание альтернативных энергетических культур.


Уборка мискантуса — энергетической агротехнической культуры

Другим колоссальным источником альтернативной энергии может служить атмосферное электричество. Энергия молний огромная и обладает разрушительными воздействиями, и для защиты от них используются молниеотводы.

альтТрудности с обузданием энергетического потенциала молнии и атмосферного электричества состоят в большом напряжении и силе тока разряда за очень короткое время, что требует создания многоступенчатых систем из конденсаторов для накопления заряда с последующим использованием запасенной энергии. Также хорошие перспективы имеются у статического атмосферного электричества.

Второго октября 2013-го года будет ровно год как я и моя семья живем на даче. Ранее я уже публиковал статью о своей даче и ее электрообеспечении но сейчас хочется рассказать какие-то новые моменты и изменения, которые произошли за последнее время.

Для начала немного напомню мотивы, которые побудили принять решение о жизни на даче. До последнего времени мы жили на съемных квартирах и часто приходилось их менять, то продадут, то еще что. Сами выходцы из деревни, но дом там сгорел, а с новым домом так и не срослось, жилье не дают, и денег на строительство нет, на зарплату рабочего и так еле выживаешь.

Так-вот снова предстоял переезд так-как съемную квартиру продали, но опять искать подходящее жилье не хотелось, да и надоели эти бетонные джунгли до омерзения. Примерно месяц назад до этого был приобретен за 7000рублей заросший и давно не обрабатываемый дачный участок, который был очищен и приведен в порядок.

Выдвинутое на семейном совете предложение, а что если построить небольшой домик (пусть даже шалаш) и переехать жить на этот дачный участок, было принято на ура, и дело не заставило долго ждать. Буквально на второй день на этот участок завезли 2,5 куба досок, и я за два вечера построил домик, утеплил пенопластом, сложил печку, в общем на пятый день мы уже наняли грузовую машину и переехали.

Если честно, то этот план я вынашивал уже давно и готовился. На даче все хорошо, домик есть, вода рядом из колонки, но нет электричества, о котором я позаботился заранее. Еще в прошлом году обдумывая вопросы о автономном электрообеспечении я начал интересоваться ветряками и солнечными панелями. Для опыта и эксперимента зимой собрал мини ветрогенератор из динамо-втулки как походный и переносной вариант.

Но его мощность была очень маленькой, а я уже тогда планировал что будет работать постоянно телевизор, освещение и ноутбук, поэтому стал строить второй ветрогенератор по мощнее. К началу переезда у меня были два ветрогенератора, правда путем не доделанные и не обкатанные на ветру. Так-же был куплен инвертор на 1000ватт, но аккумулятора нормального пока не было.

После переезда оба ветряка были установлены и постоянно доделовались, так-как то лопасти плохо работали, так-как я их не рассчитывал, то еще что отвалится, все-таки без опыта делал в первый раз. Аккумулятор автомобильный одолжил у знакомых, и его ветряки заряжали напрямую без всяких контроллеров, а за зарядом я сам следил.

Одного аккумулятора было мало, ветряк, который из динамо втулки я снял, так-как он воет из-за однофазного генератора. А тот что из автомобильного генератора я улучшил и он был единственным источником электроэнергии. Его не хватало, и когда ветра не-было несколько дней из аккумулятора выжимали все соки на светодиодное освещение, а про телевизор и не думали, и включали только в редкие ветреные дни.

Потом я уже в середине зимы построил к нему в помощь свой третий ветрогенератор , который сделал тоже из автомобильного генератора. Теперь они вдвоём давали много энергии и полностью разряженный аккумулятор могли зарядить за 6-8 часов на хорошем ветре. Но в один аккумулятор энергии много не помещалось и в безветренные дни она быстро кончалась

Поэтому были куплены еще два автомобильных аккумулятора, общая емкость акб стала 180А/ч.Когда стало три аккумулятора, то все нормализовалось, ветряки теперь работают не отключаясь,в аккумуляторах теперь помещается много энергии, которую мы перестали экономить и теперь даже смотрели телевизор каждый день.

Долго ли коротко, но пролетела зима, весна порадовала ветрами, и наступило лето. Летом удалось купить две солнечные панели мощностью по 100 ватт. Я их тут-же повесил на стенку домика и подключил одну из них. Энергии стало хоть отбавляй. Каждый день солнце и панель давит 3-6 Ампер в зависимости от положения солнца.

Ветряки остановлены и не нужны стали, так-как всего одна панель перекрывала все нужды в электроэнергии. Так-как ветряки перестали быть нужными я их снял. Летом часто были грозы с молниями и чтобы молнии не угодили в ветряки я их опустил и разобрал. Одну мачту под антенну пустил, а вторую просто положил.

Сейчас конец сентября, на улице пасмурно и постоянно идут дожди, скоро год как мы живем на даче, и вот как обстоят дела с электричеством. С начала сентября я подключил вторую панель, так-как энергии стало не хватать и аккумуляторы стали недозаряжаться из-за отсутствия солнца. С каждым днем недозаряд был хорошо виден на приборах, но в редкие солнечные дни все-таки аккумуляторы заряжались. А в конце сентября солнышко вообще перестало показываться и аккумуляторы снова стали недозаряжаться

Поэтому снова вспомнил про ветрогенераторы и буквально вчера поставил один ветрогенератор. Теперь он помогает панелям в зарядке аккумуляторов. Много я тут понаписал, но это еще далеко не все, теперь пойдут фотографии с описаниями, и а конце видеоролик.

>

На первом фото моя электростанция, которая состоит из двух панелей мощностью по 100 ватт, и самодельный ветрогенератор мощностью 100 ватт, который я сделал из автомобильного генератора. Панели работают неплохо и в солнечную погоду дают до 12-ти ампер в пике солнца, но когда его нет и на небе густые тучи, то ток падает до 0,3-0,5 Ампер, а если солнце светит не напрямую то ток 3-6А.

На фото ниже видно как закреплены панели, ничего сложного, все было по быстрому и из того что под руки попалось, а попались кусочки оцинкованной жести, которые прикрутил на саморезы к алюминиевому профилю панелей.

>

Ветрогенератор на ветру 12-14 м/с развивает мощность до 100-120ватт/ч, но на обычном ветру 1-2 А, на порывах до 6 А. А в общем итоге из-за слабых ветров отдача от ветрогенератора небольшая, и лишь в редкие ветреные дни ветрогенератор радует показаниями амперметра, которые подскакивают до 8-9 Ампер. Пробовал ветряк на 24 вольта, так мощность намного больше получается, ток на сильном ветру 10-12А на 28 вольт, это до 300 ватт/ч мощности, но я использую всю электронику на 12-вольт, и на 24 вольта переходить денег нет.

>

>

>

Это недавно сделанное уличное освещение. Темнеть стало рано и ночи темнее, поэтому вот придумал по быстрому из того что завалялось в у меня в ящиках. А завалялось пара светодиодных лампочек по 3 ватт каждая. Из них и родилось ночное освещение двора.

>

На веранде домика в качестве освещения к потолку прилеплен метровый отрезок светодиодной ленты. Ленту покупал самую дешевую что нашел в своих магазинах, 5 метров обошлось в 250 рублей, чему был очень рад и в последствии не был разочарован.

>

В домике тоже освещение из этой ленты, два метровых отрезка приклеены на потолок. Каждый отрезок на свою часть комнаты и выключается по отдельности. Один метровый отрезок светодиодной ленты потребляет ток 0,5 А, это 6 ватт/ч.

У меня все освещение это три отрезка ленты по метру - если вместе включить, то ток потребления 1,5Ампер, и на улице две лампочки потреблением 0,6А, в итоге весь свет кушает до 2,1А, это до 25 ватт/ч, но они вместе почти не работают, и много времени горит только один отрезок светодиодной ленты, а остальной свет включается по мере необходимости.

>

На этом фото мой электрощиток. Сделать этот ящик было временное решение чтобы убрать провода и аккумуляторы, но он и по сей день так и остался. На дверце я закрепил все что мне нужно. Это два автомата, первым я закорачиваю ветрогенератор для его остановки когда он не нужен, или сильный ветер на улице, чтобы не сдуло. Второй автомат служит для защиты и если вдруг что нибудь замкнет, то автомат срабатывает отключая аккумуляторы, оба автомата на 10 Ампер.

Так-же рядом закреплены два стрелочных датчика, выдернутых из автомобильного зарядного. Вольтметр показывает напряжение в сети, а амперметр показывает силу зарядного тока от панелей и ветрогенератора.

В верхней части электрощитка находится самодельный балластный регулятор, который скидывает лишнюю энергию на лампочку когда напяжение поднимается выше 14 вольт. Сам контроллер напряжения очень прост, состоит из автомобильного реле-регулятора, транзистора, который работает как реле и лампочки, которая сжигает все излишки электроэнергии.

>

Внутри щитка я спрятал два автомобильных аккумулятора по 60А/ч каждый, купил что по дешевле, уже более полугода работают пока без проблем. Так-же на обратной стороне дверцы все соединения проводки, там полный хаос в соединениях, и без меня наверное никто не разберется если только не выпьет бутылку водки, тогда может быть.

>

На боковой части электрошитка видно что в верхней части в него входят все провода. А так-же висит подковка на счастье, которая является диодным мостом от автомобильного генератора. Этот диодный мост подсоединен к солнечным панелям и препятствует разряду аккумуляторов в ночное время суток. Так-же еще там два выключателя, один двойной на свет в домике, и второй включает свет в веранде. фото акб на полу

>

Но Аккумуляторов у меня три шт, этот что на полу стоит просто не помещается в щиток и я его держу на полу, он тоже автомобильный на 60А. На нем инвертор, это уже второй инвертор, первый китайский умер с включенным насосом 180 ватт, был киловаттный.

Этот инвертор, что на акб как написано 1500 ватт, но на самом деле всего 600 ватт, китайцы обманули. Через него включаю иногда маленькую болгарку через кипятильник на 600 ватт, так-как напрямую она не работает и в инверторе срабатывает защита, хотя болгарка на 750 ватт всего, а через кипятильник запускается.

Сейчас у меня все потребители 12- ти вольтовые, это светодиодное освещение максимальной мощностью 25 ватт/ч если все включить. Телевизор, который кушает 3 А, это 36 ватт/ч и работает постоянно, впрочем как и часть освещения. Для зарядки телефонов в щитке есть автомобильный адаптор с USB выходом на 5 вольт. Так-же еще отдельно стоят еще два адаптора с USB выходами, один для питания моего планшета, а второй для питания 3G/WiFi/ роутера для интернета.

>
даче,
Вот наверное и все что я хотел рассказать. Сейчас очень доволен что живу на даче и есть свое полноценное электричество, тепло от печи и уют, живу конечно скромно, но мне нравится такая жизнь вне города и менять ничего не хочу, а планирую строить нормальный дом если деньги будут.

Так-же снял небольшой видеоролик, к сожалению некачественный и короткий, но когда включаешь камеру телефона то дар речи просто проподает и мозги отупляются, поэтому сделав несколько дублей бросил эту затею, выбрал что получше и выложил, не судите строго из меня не очень хороший рассказчик и показчик.

Ниже оставте пожалуста свои комментарии, очень интересно что думают люди о моей бюджетной электростанции, обо мне, о моей жизни на даче, и о том что я здесь понаписал.

В условиях, когда цены на энергоносители постоянно повышаются, собственники частных домов чаще задумываются об альтернативных источниках энергии. Некоторые домовладельцы вовсе не имеют возможности подключения к магистрали из-за высокой стоимости монтажных работ. Инженеры, а вместе с ними и народные умельцы, обратили внимание на то, что даёт человечеству сама природа и создали ряд устройств, которые можно для возобновления энергоресурсов. Видео продемонстрирует лучшие наработки в действии.

Генератор из биоотходов

Биогаз – это экологически чистый вид топлива. Используют его аналогично природному газу. Технология производства основана на жизнедеятельности анаэробных бактерий. Отходы помещают в ёмкость, в процессе разложения биологических материалов выделяются газы: метан и сероводород с примесью углекислоты.

Данную технологию активно используют в Китае и на животноводческих фермах Америки. Чтобы в домашних условиях получать биогаз непрерывно, нужно иметь фермерское хозяйство или доступ к бесплатному источнику навоза.

Генератор из биоотходов

Для сооружения такой установки понадобится герметичная ёмкость с вмонтированным шнеком для перемешивания, патрубок для отвода газа, горловина для загрузки отходов и штуцер для выгрузки отработанных отходов. Конструкция должна быть идеально герметичной. Если газ не будет отбираться постоянно, то понадобится установить предохранительный клапан для сброса избыточного давления, чтобы у ёмкости не сорвало «крышу». Порядок действий следующий.

  1. Выбираем место для обустройства ёмкости. Размер подберите исходя из количества имеющихся отходов. Для эффективной работы целесообразно её заполнение на две трети. Резервуар может быть металлическим или из армированного бетона. Большое количество биогаза не удастся получить из маленькой ёмкости. Из тонны отходов выйдет 100 кубов газа.
  2. Чтобы ускорить процесс работы бактерий, потребуется подогрев содержимого. Его можно осуществить несколькими путями: под ёмкость поместить змеевик, подключенный к системе отопления или установить ТЭНы.
  3. Анаэробные микроорганизмы находятся в самом сырье, при определённой температуре они становятся активными. Автоматическое устройство в водонагревательных котлах включит обогрев при поступлении новой партии и отключит, когда отходы прогреются до заданной температуры.
    Полученный газ можно преобразовать в электричество через газовый электрогенератор.

Совет. Отработанные отходы используются в качестве компостного удобрения для садовых грядок.

Энергия из ветра

Наши предки давно научились применять энергию ветра для своих нужд. В принципе, с тех пор конструкция почти не изменилась. Только жернова сменил привод генератора, преобразующий энергию вращающихся лопастей в электричество.

Для изготовления генератора понадобятся следующие детали:

  • генератор. Некоторые используют мотор от стиральной машинки, слегка преобразовав ротор;
  • мультипликатор;
  • аккумулятор и контроллер его заряда;
  • преобразователь напряжения.

Ветрогенератор

Существует множество схем самодельных ветрогенераторов. Все они комплектуются по одному принципу.

  1. Собирается рама.
  2. Устанавливается поворотный узел. За ним монтируются лопасти и генератор.
  3. Монтируют боковую лопату с пружинной стяжкой.
  4. Генератор с пропеллером крепится на станину, затем её устанавливают на раму.
  5. Подсоединяют и соединяют с поворотным узлом.
  6. Устанавливают токосъёмник. Соединяют его с генератором. Провода подводят к батарее.

Совет. От диаметра пропеллера будет зависеть число лопастей, а также количество генерируемого электричества.

Тепловой насос

Чтобы получить энергию из земных глубин, потребуется соорудить достаточно сложное устройство, которое позволит получать альтернативную энергию из грунтовых вод, самого грунта или из воздуха. Чаще всего такие устройства применяют для обогрева помещений. По сути, агрегат представляет собой большую холодильную камеру, которая при охлаждении окружающей среды преобразует энергию и отдаёт в виде тепла с высоким потенциалом. Составляющие системы:

  1. Наружный и внутренний контур с фреоном.
  2. Испаритель.
  3. Компрессор.
  4. Конденсатор.

Схема работы теплового насоса

Коллектор можно установить вертикально, если площадь участка не позволяет установить горизонтальный. Бурят несколько глубоких скважин и опускают в них контур. Горизонтально его располагают в грунт на глубину полтора метра. Если дом расположен на берегу водоёма, теплообменник прокладывают в воде.
Компрессор можно взять от кондиционера. Конденсатор изготавливается из 120 л бака. В ёмкость вставляется медный змеевик, по нему будет циркулировать фреон, и вода из отопительной системы начнёт прогреваться.

Испаритель изготавливается из пластиковой бочки объёмом более 130 литров. В этот бак вставляется ещё один змеевик, его совмещение с предыдущим будет осуществляться через компрессор. Патрубок испарителя делают из обрезка канализационной трубы. Посредством патрубка регулируется поступление воды из водохранилища.

Испаритель опускается в водоём. Вода, обтекая его, побуждает испарение фреона. Газ поднимается в конденсатор и отдаёт тепло воде, которая окружает змеевик. Теплоноситель циркулирует в системе отопления, обогревая помещение.

Совет. Температура воды водоёма не имеет значения, важно лишь её постоянное наличие.

Энергия солнца - в электричество

Солнечные панели впервые начали делать для космических кораблей. В основе устройства лежит способность фотонов создавать электрический ток. Вариаций конструкции солнечных батарей великое множество и каждый год они совершенствуются. Самостоятельно изготовить солнечную батарею можно двумя способами:

Способ №1. Купить готовые фотоэлементы, собрать из них цепь и накрыть конструкцию прозрачным материалом. Работать нужно предельно осторожно, все элементы очень хрупкие. Каждый фотоэлемент имеет маркировку в вольт-амперах. Посчитать нужное количество элементов для сбора батареи необходимой мощности не составит большой сложности. Последовательность работы такая:

  • для изготовления корпуса понадобится лист фанеры. По периметру прибиваются деревянные рейки;
  • в листе фанеры сверлятся отверстия для вентиляции;
  • внутрь помещается лист ДВП со спаянной цепью фотоэлементов;
  • проверяется работоспособность;
  • на рейки прикручивается оргстекло.

Солнечные батареи

Способ №2 требует знаний электротехники. Электрическая цепь собирается из диодов Д223Б. Спаивают их по рядам последовательно. Помещают в корпус, накрытый прозрачным материалом.

Фотоэлементы бывают двух видов:

  1. Монокристаллические пластины обладают КПД 13% и прослужат четверть века. Безупречно работают только в солнечную погоду.
  2. Поликристаллические имеют КПД ниже, их срок службы всего 10 лет, но мощность не падает при облачности. Панель площадью 10 кв. м. способна произвести 1КВт энергии. При размещении на крыше стоит учитывать общий вес конструкции.

Готовые батареи размещают на самой солнечной стороне. Панель необходимо оснастить возможностью регулировки наклона угла по отношению к Солнцу. Вертикальное положение устанавливают во время снегопадов, чтобы батарея не вышла из строя.

Солнечную панель можно использовать с аккумулятором или без него. Днём потреблять энергию солнечной батареи, а ночью - аккумулятора. Либо днём пользоваться солнечной энергией, а ночью - от центральной сети электроснабжения.

При наличии на участке ручья или водоёма с плотиной дополнительным источником альтернативной электроэнергии станет самодельная гидроэлектростанция. В основе устройства лежит водяное колесо, а мощность будет зависеть от скорости течения воды. Материалы для изготовления генератора и колеса можно взять от автомобиля, а обрезки уголка и металла найдутся в любом хозяйстве. Кроме этого, понадобится кусок медного провода, фанера, смола полистироловая и неодимовые магниты.

Самодельная гидроэлектростанция

Последовательность работ:

  1. Делается колесо из 11 дюймовых дисков. Из стальной трубы изготавливаются лопасти (режем трубу вдоль на 4 части). Потребуется 16 лопастей. Диски стягиваются болтами, зазор между ними 10 дюймов. Лопасти привариваются сваркой.
  2. Изготавливается сопло по ширине колеса. Его делают из обрезка металла, выгнув по размеру и соединив сваркой. Сопло настраивают по высоте. Это позволит отрегулировать водяной поток.
  3. Сваривается ось.
  4. Устанавливается колесо на ось.
  5. Делается обмотка, заливаются смолой катушки – статор готов. Собираем генератор. Из фанеры изготавливается шаблон. Устанавливают магниты.
  6. Генератор защищают металлическим крылом от водяных брызг.
  7. Колесо, ось и крепежи с соплом покрывают краской для защиты металла от коррозии и эстетического удовольствия.
  8. Регулировкой сопла добиваются наибольшей мощности.

Самодельные устройства не требуют больших капиталовложений и производят энергию бесплатно. Если совместить несколько видов альтернативных источников, то такой шаг ощутимо снизит расходы на электроэнергию. Для сбора агрегата понадобятся только умелые руки и ясная голова.

Альтернативные источники энергии: видео

Источники энергии для дома: фото


Сегодня всем известно, что запасы углеводородов на Земле имеют свой предел. С каждым годом все труднее становится добывать нефть и газ из недр. Кроме того, их сжигание наносит непоправимый ущерб экологии нашей планеты. Несмотря на то, что технологии производства возобновляемой энергии сегодня очень эффективны, государства не спешат отказываться от сжигания топлива. При этом, цены на энергоносители растут с каждым годом, заставляя простых граждан все больше и больше раскошеливаться.

В связи с этим, производство альтернативной энергии сегодня становится не просто чудачеством отдельных любителей, а занятием вполне утилитарным и даже необходимым в некоторых случаях. Сотни тысяч владельцев загородных домов, не только в мире, но в нашей стране, сегодня с удовольствием используют «зеленые» технологии производства электроэнергии. Как добывается альтернативная энергия своими руками: обзор лучших возобновляемых источников электричества можно увидеть далее.

Доступные для извлечения собственными руками источники возобновляемой энергии

Человек с давних времен использовал в своем быту приспособления и механизмы, которые были способны преобразовывать движение природных стихий в механическую энергию. Примером могут служить ветряные и водяные мельницы. С изобретением электричества стало возможным преобразование механической энергии в электрическую путем установки генератора на движущиеся части механизма. Со временем эти конструкции были усовершенствованы, и сегодня на гидроэлектростанциях и ветряных комплексах в мире вырабатывается большое количество электричества.

Кроме воды и ветра человечеству доступен солнечный свет, энергия земных недр, биологические топливо. В связи с этим в быту используются следующие устройства для выработки возобновляемой энергии:

  • Батареи для получения солнечной энергии.
  • Тепловые насосные станции.
  • Ветровые генераторы.
  • Установки на биогазовом топливе.

Промышленность хорошо чувствует пожелания людей и уже выпускает множество моделей каждого из этих устройств. Однако цены на них сегодня таковы, что о быстрой окупаемости не может быть и речи. В связи с этим умельцы из народа разработали множество схем и проектов, по которым можно изготовить такие агрегаты. Рассмотрим некоторые из них.

Солнечные батареи – подарок космических технологий

Солнечные батареи получили известность в начале космической эры. Они по сей день используются, как источники энергии для космических кораблей и межпланетных станций. Аппараты, бороздящие пески Марса, оборудованы этими нехитрыми приспособлениями. Само Солнце дает для них свою энергию. Принцип действия солнечных панелей основан на способности фотонов при прохождении через полупроводниковый слой создавать в нем разность потенциалов, которая, при замыкании в электрическую цепь, создает электрический ток.

Удивительно, но сделать самостоятельно солнечную батарею не так уж и трудно. Есть два способа ее создания. Первый способ простой, и с ним справится любой человек. Нужно просто приобрести готовые фотоэлементы на поликристаллах или монокристаллах, связать их в одну цепь и закрыть прозрачным корпусом. Эти кристаллы способны улавливать фотоны света Солнца и преобразовывать их в электричество. Они очень хрупкие, поэтому в процессе изготовления прибора, нужно соблюдать меры предосторожности. Каждый элемент промаркирован, поэтому его вольтамперные характеристики известны. Необходимо только собрать нужное количество элементов для сооружения батареи нужной мощности. Для этого:

  • Делают прозрачный каркас из пластика, оргстекла или поликарбоната.
  • Вырезают из фанеры или пластика корпус по размеру этого каркаса.
  • Все кристаллические элементы последовательно спаивают в схему. Только при последовательном соединении достигается увеличение напряжения в цепи. Оно просто суммируется со всех элементов.
  • Фотоэлементы помещают в каркас и аккуратно закрывают, не забыв вывести наружу провода.

При выборе фотоэлементов нужно учесть то, что монокристаллы более долговечны и эффективны (КПД 13%), а поликристаллы часто ломаются и менее эффективны (КПД 9%). При этом первым требуется постоянный открытый солнечный свет, а вторые довольствуются более пасмурной погодой. Устанавливают готовую панель чаще всего на крышу или на освещенную солнцем площадку. Угол наклона должен регулироваться, так как зимой лучше устанавливать панель вертикально во избежание засыпания снегом.

Второй способ изготовления солнечных батарей на много сложнее. Здесь уже требуются некоторые электротехнические навыки. Вместо готовых элементов нужно сделать диодную цепь. Для этого необходимо приобрести или насобирать из старой техники диодов. Лучше всего для этой цели подойдут Д223Б. Они имеют высокое напряжение в 350мВ при прямых солнечных лучах. То есть для выработки 1В понадобится всего 3 таких диода. Напряжение в 12В способны создать 36 диодов. Количество значительное, но стоимость у них небольшая, около 130 рублей за сотню, поэтому основная проблема в длительности монтажа.

Диоды замачивают в ацетоне, после чего удаляют с них краску. Затем сверлят необходимое количество отверстий в пластиковой заготовке и вставляют в них диоды. Спайку производят последовательно по рядам. Готовую панель закрывают прозрачным материалом и помещают в кожух.

Как видим, воспользоваться дармовой энергией Солнца не так уж и сложно. Достаточно уделить немного сил и средств.

Тепловые насосы создают тепло из всего

Принцип их действия основан на циклах Карно. Говоря более простым языком, это большой холодильник, который при охлаждении окружающей среды, забирает у нее низкопотенциальную энергию и преобразовывает ее в тепло с высоким потенциалом. Окружающая среда может быть любой: земля, вода, воздух. В любое время года они содержат малую долю тепла. Устройство имеет достаточно сложное устройство и состоит из нескольких основных компонентов:

  • Наружный контур, заполненный природным теплоносителем.
  • Внутренний контур с водой.
  • Испаритель.
  • Компрессор.
  • Конденсатор.

В системе, как и в холодильнике применяют фреон. Наружный контур может быть помещен в водяную скважину или в открытый водоем. Иногда даже просто в землю закапывают этот контур, но это требует больших затрат.

Рассмотрим процесс самостоятельного изготовления теплового насоса. Первым делом необходимо раздобыть компрессор. Можно снять его с кондиционера. Достаточно будет мощности на нагрев 9,7кВт.

Вторая важная деталь – это конденсатор. Его можно сделать из обычного бака объемом 120 литров. Главное, чтобы он был не подвержен коррозии. Бак режут на две части и вставляют внутрь змеевик из меди. На выходы змеевика крепят двухдюймовые соединения для монтажа контура. Бак сваривают с помощью сварочного аппарата. Площадь змеевика нужно вычислить заранее по формуле: ПЗ = МТ/0,8РТ, где: ПЗ - площадь у змеевика; МТ - Мощность тепловой энергии, которую выдает система, кВт; 0,8 - коэффициент теплопроводности при протекании воды вокруг меди; РТ - разница между температурами воды на входе и на выходе в градусах Цельсия. Змеевик можно изготовить самостоятельно, путем наматывания трубы на любой цилиндр. Внутри него будет циркулировать фреон, а в баке вода из системы отопления. Она будет нагреваться при конденсации фреона.

Для изготовления испарителя потребуется пластиковая тара, имеющая объем не менее 130 литров. Горловина этого бака должна быть широкой. В него тоже помещают змеевик, который будет соединен с предыдущим в единый контур через компрессор. Выход и вход испарителя делают с помощью обычной канализационной трубы. Через него будет протекать вода из водоема или скважины, которая обладает энергией, достаточной для испарения фреона.

Работает такая система следующим образом: испаритель помещается в водоем или скважину. Вода, огибая его, вызывает испарение хладагента, который поднимается по трубам из испарителя в конденсатор. Там он конденсируется, отдавая тепло окружающей змеевик воде. Эта вода циркулирует по трубам отопления с помощью центробежного насоса, обогревая помещение. Хладагент компрессором вновь отправляется в испаритель, и цикл повторяется вновь и вновь.

Рассмотренный нами агрегат способен обогреть помещение в 60 м2 в любое время года. При этом энергия берется из окружающей среды.

Потомки ветряных мельниц, вырабатывающие киловатты

В устройстве ветряков ничего сложного нет. Не зря наши предки использовали энергию ветра так обыденно. Принципиально ничего не изменилось. Просто вместо жернов мельницы был установлен привод на генератор, который преобразует вращательную энергию лопастей в электричество.

Для изготовления ветрогенератора понадобится: высокая башня, лопасти, генератор и накопительная батарея. Придумать надо и простейшую систему управления и распределения электричества. Рассмотрим один из способов сооружения ветряка самостоятельно.
Не будем фокусировать внимание на устройстве башни и лопастей, здесь нет ничего сложного для того, кто хоть что-то смыслит в механике. Остановимся на генераторе. Можно, конечно, приобрести готовый генератор с необходимыми параметрами, но наша задача создать ветряк самостоятельно. Если у вас есть двигатель от старой стиральной машины, и он работает, то дело решено. Нам нужно будет переделать его в генератор. Для этого приобретем неодимовые магниты.

Ротор генератора растачиваем на токарном станке, делая углубления для магнитов. В них на суперклей приклеиваем магниты. Заворачиваем ротор в бумагу, а расстояние между магнитами заливаем эпоксидной смолой. Когда она засохнет – убираем бумагу, а ротор шлифуем наждачкой. Внимание! Чтобы магниты не залипали, их нужно установить с небольшим наклоном. Теперь при вращении ротора, магниты будут образовывать разность потенциалов, которую снимают с помощью клемм.

Биогазовый генератор создаст энергию из отходов

Человек в процессе своей жизнедеятельности вырабатывает огромное количество органических отходов. Особенно это актуально возле крупных городов или животноводческих комплексов. Если эти отходы поместить в анаэробную среду, то начинается процесс их разложения с выделением смеси горючих газов: метана, сероводорода с примесями углекислоты. Все они, кроме последнего являются прекрасным топливом, хоть и обладают неприятным запахом.

Для того, чтобы сделать генератор для биотоплива, понадобится герметично закрытый бак. В нем смонтирован шнек, которым отходы будут периодически перемешиваться, патрубок, через который отработанные отходы будут выгружаться и горловина для их загрузки. Кроме того, в верхней части бака вваривают патрубок для отбора выделяемого биогаза и отвода его к потребителю.

Лучше всего эту конструкцию закопать в землю и сделать абсолютно герметичной. Это будет способствовать эффективному отбору газа без утечки. Так как емкость герметична, то расход газа должен быть постоянным, в противном случае, рекомендуется сделать предохранительный клапан, который будет открываться при превышении допустимой нормы давления. Переработанные отходы являются прекрасным удобрением для огорода.

Простейшая конструкция этой установки позволяет создавать ее практически из любых подручных материалов. Это очень широко распространено в Китае. Однако, стоит соблюдать меры безопасности, так как биогаз очень горюч и токсичен. Больше всего биогаза образуется из смеси животных отходов и силоса. В бак наливают теплую воду, которая запускает процесс разложения субстрата.
Обзор лучших возобновляемых источников электричества показал, что альтернативная энергия своими руками не такое уж и чудачество. Ее можно получить буквально из ничего и в достаточных количествах для потребления домохозяйства.