Использовать энергию солнечного света для создания. Примеры использования энергии Солнца на Земле

Солнечная энергия, как альтернативный источник энергии, используется уже тысячи лет. Единственное, что меняется — технологии и эффективность применяемых устройств. Энергия солнца относится к возобновляемым источникам, что означает ее способность восстанавливаться естественным путем, без человеческого участия. К преимуществам стоит отнести экологическую чистоту, неограниченные возможности, безопасность и уникальную эффективность использования.

Доказано, что 1м 2 «огненного диска» выделяет почти 63 кВт энергии, что в эквиваленте соответствует мощности миллиона электрических лампочек. В целом Солнце обеспечивает Землю 80 000 млрд. кВ, а это в несколько раз превышает мощность всех существующих на планете электростанций. Вот почему применение солнечной энергии на практике является одной из главных задач для современного общества.

Особенности преобразования

Недоработкой современной науки является неспособность прямого потребления энергии солнца. По этой причине разработаны специальные приборы, обеспечивающие преобразование солнечной энергии в электрическую или тепловую. В первом упоминании речь идет о батареях , а во втором — о коллекторах .

Сегодня разработано несколько вариантов преобразования:

  • Термовоздушная энергетика . В ее основе лежит использование энергии солнца для получения потока воздуха, направляемого в турбогенератор. Популярность получают электростанции аэростатного типа, в которых генерируется водяной пар, благодаря нагреву аэростатной поверхности со специальным покрытием. Преимущество методики заключается в способности накапливать необходимый объем пара для обеспечения работы системы даже в темное время суток, при отсутствии солнечного света.
  • Фотовольтаика . Особенность методики заключается в применении специальных панелей, имеющих фотоэлектрическую базу. Представители — солнечные батареи. В основе изделий лежит кремний, а толщина рабочей поверхности равна нескольким десятым миллиметра. Размещать конструкции можно в любом месте. Главным условием является максимальное поступление лучей.

Кроме фотопластин, для преобразования солнечной энергии могут использоваться тонкопленочные панели, обладающие меньшей толщиной. Их главным недостатком является небольшая эффективность.

  • Гелиотремальная энергетика — направление, суть которого заключается в поглощении света поверхностью с последующим фокусированием тепла для нагрева. В бытовой сфере этот вид превращения солнечной энергии используется для прогрева. В промышленности эта методика применяется для получения электричества с помощью тепловых машин.

Как может использоваться солнечная энергия?

Использование солнечной энергии возможно с применением двух типов систем — пассивных и активных. Рассмотрим их подробнее.

Пассивные — системы, в которых не предусмотрено каких-либо сложных преобразований. Одним из примеров является металлическая емкость, которая окрашена в черный цвет и наполненная водой. Лучи солнца попадают на поверхность, нагревают металл, а вместе с ним и жидкость внутри. Существуют и более продвинутые способы пассивного использования энергии, предназначенные для проектирования сооружений, выбора стройматериалов, учета климата и решения других задач. Чаще всего пассивные системы применяются для охлаждения, обогрева или освещения зданий.

Активные — устройства, в которых для превращения солнечной энергии применяются специальные коллекторы. Особенность последних заключается в поглощении лучей солнца и их последующее преобразование в тепло, которое с помощью теплоносителя обеспечивает обогрев зданий или воды. Сегодня солнечные коллекторы применяются во многих сферах деятельности — сельском хозяйстве, бытовом и прочих секторах, где требуется тепло.

Принцип действия солнечного коллектора легко проверить на практике — достаточно положить на подоконник какой-либо предмет и убедиться, что на него попадают лучи солнца. Изделие нагревается даже при минусовой температуре на улице. В этом и заключается особенность использования солнечной энергии с помощью коллектора.

В основе устройства лежит теплоизолированная пластина, которая изготавливается с использованием теплопроводящего материала. Сверху она покрывается темной краской. Лучи солнца проходят через промежуточный элемент, нагревают пластинку, а после накопленная тепловая энергия применяется для нагрева здания. Направление теплого потока возможно с помощью вентилятора или естественным путем.

Недостаток системы заключается в необходимости дополнительных затрат на покупку и установку вентилятора. Кроме того, солнечные коллекторы эффективны только световой день, поэтому полностью заменить основной источник обогрева не получится. Для повышения КПД устройства необходимо устанавливать коллектор в главный источник вентиляции или тепла.

Такие коллекторы бывают двух типов:

  1. Плоскими. Такие устройства состоят из поглотителей солнечной энергии, покрытия (используется стекло с низким содержанием металлических частиц), термоизолирующего слоя и трубопровода. Коллектор улавливает солнечные лучи и выдает тепловую энергию. Место для монтажа — крыша. При этом батарея может быть встроена в поверхность или иметь вид отдельного элемента.
  2. Вакуумными. Особенность солнечных коллекторов заключается в универсальности и возможности применения в течение всего года. В основе лежат вакуумные трубки, состоящие из боросиликатного стекла. На внутренней части стенки нанесено специальное покрытие, улучшающее восприятие солнечного света. Целью такой конструкции является минимальное отражение лучей. Для большей эффективности в промежутках между трубками присутствует вакуум, который поддерживается газораспределителем бариевого типа. Преимущество вакуумных коллекторов в том, что они могут работать на морозе и при облачной погоде. В последнем случае они поглощают энергию ИК лучей.

Наибольшим спросом в промышленности и быту пользуются солнечные батареи, которые преобразуют энергию солнца в тепло. В основе таких устройств лежат фитоэлектрические преобразователи.

Преимущества — простота конструкции, удобство монтажа, минимальные требования к обслуживанию, а также повышенный ресурс. Для установки солнечной батареи не нужно дополнительного места. Главным условием нормальной работы является открытость свету и отсутствие затенения. Ресурс исчисляется десятилетиями, что и объясняет подобную популярность изделий.

Батареи, использующие энергию солнца, имеют и ряд недостатков:

  • Повышенная чувствительность к загрязнению. По этой причине батареи устанавливают под углом 45 градусов, чтобы снег и дождь помогали очищать поверхность.
  • Недопустимость чрезмерного нагрева. Если температура достигает 100-125 градусов Цельсия, возможно отключение устройства из-за повышения допустимой температуры. В такой ситуации потребуется специальная система охлаждения.
  • Высокая стоимость. Этот недостаток нельзя назвать полноценным, ведь солнечная батарея имеет большой срок службы, а затраты на ее покупку и установку окупаются в течение нескольких лет.

Итоги

Современное общество знает, где используется солнечная энергия, и активно применяет накопленный опыт на практике. Возможности «огненного диска» необходимы для получения электрической энергии, обогрева и охлаждения помещений, а также обеспечения вентиляции. С ростом стоимости нефти и газа наблюдается постепенный переход на альтернативные и более доступные источники. Например, в Германии почти половина домов оборудовано солнечными коллекторами для нагрева воды. Во многих государствах работают специальные программы, направленные на использование энергии солнца. И данная тенденция с каждым годом только набирает обороты.

Солнечная энергетика - активно развивающееся направление в энергоснабжении частных и общественных зданий. Каковы плюсы и минусы такого природного источника энергии, как солнечное излучение?

Преимущества солнечной энергии

1. Возобновляемость

Говоря о солнечной энергии, в первую очередь, необходимо упомянуть, что это - возобновляемый источник энергии, в отличие от ископаемых видов топлива - угля, нефти, газа, которые не восстанавливаются. По данным NASA еще порядка 6.5 млрд. лет жителям Земли не о чем беспокоиться - приблизительно столько Солнце будет согревать нашу планету своими лучами до тех пор, пока не взорвется.

2. Обильность

Потенциал солнечной энергии огромен - поверхность Земли облучается 120 тыс. тераваттами солнечного света, а это в 20 тыс. раз превышает общемировую потребность в ней.

3. Постоянство

Кроме того, солярная энергия неисчерпаема и постоянна - ее нельзя перерасходовать в процессе удовлетворения нужд человечества в энергоносителях, так что ее хватит в избытке и на долю будущих поколений.

4. Доступность

Помимо прочих достоинств солнечной энергии, она доступна в каждой точке мира - не только в экваториальной зоне Земли, но и в северных широтах. Скажем, Германия на данный момент занимает первое место в мире по использованию энергии солнца и обладает максимальным ее потенциалом.

5. Экологическая чистота

В свете последних тенденций в борьбе за экологическую чистоту Земли, солнечная энергетика - это наиболее перспективная отрасль, которая частично заменяет энергию, получаемую от невозобновляемых топливных ресурсов и, тем самым, выступает принципиальным шагом на пути защиты климата от глобального потепления. Производство, транспортировка, монтаж и использование солнечных электростанций практически не сопровождается вредными выбросами в атмосферу. Даже если они и присутствуют в незначительной мере, то по сравнению с традиционными источниками энергии - это почти что нулевое воздействие на окружающую среду.

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

Издавна люди говорили о Солнце как о могучем и великом, возвышая его в своих религиях до одушевленного объекта. Светилу поклонялись, ему возносили хвалу, им мерили время и всегда считали его первоисточником земных благ.

Необходимость в солнечной энергии

Прошли тысячелетия. Человечество вступило в новую эру своего развития и пользуется плодами бурно развивающегося технологического прогресса. Однако и по сегодняшний день именно Солнце представляет собой основной природный источник тепла, а, следовательно, и жизни.

Как человечество использует Солнце в повседневной своей деятельности? Рассмотрим этот вопрос подробнее.

«Работа» Солнца

Небесное светило служит единственным источником той энергии, которая нужна для проведения фотосинтеза растений. Солнце приводит в движение круговорот воды, и только благодаря ему на нашей планете имеются все известные человечеству ископаемые виды топлива. И еще люди пользуются силой этой яркой звезды для того, чтобы обеспечить свои потребности в электрической и тепловой энергии. Без этого жизнь на планете была бы просто невозможна.

Основной источник энергии

Природа мудро заботится о том, чтобы человечество получало от небесного светила его дары. Доставка к Земле солнечной энергии осуществляется путем передачи радиационных волн на поверхность материков и вод. Причем до нас из всего посылаемого спектра доходят только:

1. Ультрафиолетовые волны. Они невидимы для человеческого глаза и составляют примерно 2% в общем спектре.

2. Световые волны. Это примерно половина энергии Солнца, которая достигает поверхности Земли. Благодаря световым волнам человек видит все краски окружающего его мира.

3. Инфракрасные волны. Они составляют примерно 49% спектра и нагревают поверхность воды и суши. Именно эти волны и являются наиболее востребованными в вопросах использования энергии Солнца на Земле.

Принцип преобразования инфракрасных волн

Каким образом происходит процесс использования энергии Солнца на Земле? Как и любое другое подобное действие, он осуществляется по принципу прямого превращения. Для этого нужна только специальная поверхность. Попадая на нее, солнечный свет проходит процесс превращения в энергию. Для получения тепла в этой схеме должен быть задействован коллектор. Он поглощает инфракрасные волны. Далее в устройстве, использующем энергию Солнца, непременно присутствуют накопители. Для нагревания конечного продукта устраивают специальные теплообменники.

Цель, которую преследует солнечная энергетика, - получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого - Солнце.

Работа комплекса

Теоретически каждый из нас может произвести расчет солнечной установки. Ведь известно, что, пройдя путь от единственной звезды нашей галактической системы до Земли, поток световых лучей принесет с собой энергетический заряд, равный 1367 Вт на квадратный метр. Это так называемая солнечная постоянная, которая существует на входе в атмосферные слои. Такой вариант возможен только при идеальных условиях, которых в природе просто не существует. После прохождения атмосферы солнечные лучи принесут на экватор 1020 Вт на квадратный метр. Но из-за смены дневного и ночного времени суток мы сможем получить в три раза меньшее значение. Что касается умеренных широт, то здесь меняется не только длительность светового дня, но и сезонность. Таким образом, получение электроэнергии в местах, далеких от экватора, при расчете нужно будет уменьшить еще в два раза.

География излучений небесного Светила

Где может достаточно эффективно работать солнечная энергетика? Природные условия для размещения установок играют немаловажную роль в этой развивающейся отрасли.
Распределение солнечного излучения на поверхности Земли происходит неравномерно. В одних регионах луч Солнца - долгожданный и редкий гость, в других он способен угнетающе воздействовать на все живое.

То количество солнечного излучения, которое получает тот или иной район, зависит от широты его нахождения. Самые большие дозы энергии природного светила получают государства, находящиеся рядом с экватором. Но и это еще не все. Объем солнечного потока зависит от количества ясных дней, которые изменяются при переходе от одной климатической зоны к другой. Увеличить или уменьшить степень излучения способны воздушные потоки и прочие особенности региона. Преимущества энергии Солнца более всего знакомы:

Странам северо-восточной Африки и некоторым юго-западным и центральным областям континента;
- жителям Аравийского полуострова;
- восточному побережью Африки;
- северо-западной Австралии и некоторым островам Индонезии;
- западному побережью Южной Америки.

Что касается России, то, как показывают произведенные на ее территории замеры, наибольшим дозам солнечного излучения радуются районы, граничащие с Китаем, а также северные зоны. А где в нашей стране Солнце обогревает Землю меньше всего? Это северо-западный регион, в который входит Санкт-Петербург и прилегающие к нему области.

Электростанции

Сложно представить себе нашу жизнь без использования энергии Солнца на Земле. Как применить ее? Использовать лучи света можно для выработки электричества. Потребность в нем растет с каждым годом, а запасы газа, нефти и угля сокращаются стремительными темпами. Именно поэтому в последние десятилетия люди стали строить солнечные электростанции. Ведь эти установки позволяют использовать альтернативные источники энергии, значительно экономя природные ископаемые.

Солнечные электростанции работают благодаря встроенным в их поверхность фотоэлементам. Причем в последние годы удалось значительно повысить КПД работы таких систем. Солнечные установки стали выпускать из новейших материалов и с использованием креативных инженерных решений. Это значительно увеличило их мощность.

По мнению некоторых исследователей, уже в ближайшем будущем человечество может отказаться от существующих ныне традиционных путей получения электроэнергии. Потребности людей полностью удовлетворит небесное светило.

Солнечные электростанции могут иметь различные размеры. Самые небольшие из них - частные. В этих системах предусмотрено всего несколько солнечных панелей. Самые большие и сложные установки занимают площади, превышающие десять квадратных километров.

Все солнечные электростанции делят на шесть типов. Среди них:

Башенные;
- установки с фотоэлементами;
- тарельчатые;
- параболические;
- солнечно-вакуумные;
- смешанные.

Самым распространенным типом электростанции является башенный. Это высокая конструкция. Внешне она напоминает башню с расположенным на ней резервуаром. Емкость наполнена водой и выкрашена в черный цвет. Вокруг башни находятся зеркала, площадь которых превышает 8 квадратных метров. Вся эта система подключена к единому пульту управления, благодаря которому можно направлять угол наклона зеркал таким образом, чтобы они постоянно отражали солнечный свет. Лучи, направленные на резервуар, нагревают воду. Система выдает пар, который и направляется для выработки электроэнергии.

При работе электростанций фотоэлементного типа используются солнечные батареи. Сегодня подобные установки стали особенно популярными. Ведь солнечные батареи могут быть установлены небольшими блоками, что позволяет применять их не только для промышленных предприятий, но и для частных домов.

Если вы увидите целый ряд огромных по своему размеру спутниковых антенн, на внутренней стороне которых установлены зеркальные пластины, то знайте, что это параболические электростанции, работающие на излучении Солнца. Принцип их действия схож с такими же системами башенного типа. Они ловят пучок света и нагревают приемник с жидкостью. Далее вырабатывается пар, который и идет на производство электроэнергии.

Тарельчатые станции работают так же, как и те, которые относят к башенному и параболическому типу. Отличия кроются лишь в конструктивных особенностях установки. На первый взгляд она похожа на металлическое дерево огромных размеров, листьями которого являются плоские зеркала круглой формы. В них и концентрируется солнечная энергия.

Необычный способ получения тепла использован в солнечно-вакуумной электростанции. Ее конструкция представляет собой участок земли, накрытый круглой крышей. В центре этого сооружения возвышается полая башня, в основании которой и установлены турбины. Вращение лопастей такой электростанции происходит благодаря потоку воздуха, который возникает при разности температур. Стеклянная крыша пропускает лучи Солнца. Они нагревают землю. Температура воздуха внутри помещения повышается. Разность показаний столбиков термометров внутри и снаружи и создает воздушную тягу.

Солнечная энергетика задействует и электростанции смешанного типа. О таких системах можно говорить в тех случаях, когда, например, на башнях применяются дополнительные фотоэлементы.

Достоинства и недостатки солнечной энергетики

У каждой отрасли народного хозяйства есть свои положительные и отрицательные стороны. Имеются они и при использовании световых потоков. Плюсы солнечной энергетики заключены в следующем:

Экологичность, ведь она не загрязняет окружающую среду;
- доступность основных составляющих - фотоэлементов, которые реализуются не только для промышленного применения, но и для создания личных небольших электростанций;
- неисчерпаемость и самовосстанавливаемость источника;
- постоянно снижающаяся себестоимость.

Среди недостатков солнечной энергетики можно выделить:

Влияние времени суток и погодных условий на производительность электростанций;
- необходимость в аккумулировании энергии;
- снижение производительности в зависимости от широты, на которой расположен регион, и от времени года;
- большой нагрев воздуха, который имеет место на самой электростанции;
- потребность в периодической чистке от загрязнения, в которой нуждается система солнечных батарей, что проблематично в связи с огромными площадями, на которых установлены фотоэлементы;
- относительно высокая стоимость оборудования, которая хоть и снижается с каждым годом, но пока еще недоступна для массового потребителя.

Перспективы развития

Каковы дальнейшие возможности использования энергии Солнца на Земле? На сегодняшний день этому альтернативному комплексу пророчат большое будущее.

Перспективы солнечной энергетики радужны. Ведь уже сегодня в этом направлении идут огромные по своим масштабам работы. Каждый год в различных странах мира появляется все больше и больше солнечных электростанций, размеры которых поражают своими техническими решениями и масштабами. Кроме того, специалисты данной отрасли не прекращают проводить научные исследования, цель которых - многократное увеличение коэффициента полезного действия используемых на таких установках фотоэлементов.

Ученые произвели интересный расчет. Если на суше планеты Земля установить фотоэлементы, которые бы расположились на семи сотых ее территории, то они, даже имея КПД 10%, обеспечили бы все человечество необходимым ему теплом и светом. И это не столь уж далекая перспектива. Ведь фотоэлементы, которые используются на сегодняшний день, имеют КПД, равный 30%. При этом ученые надеются довести это значение до 85%.

Развитие солнечной энергетики идет достаточно высокими темпами. Люди серьезно озабочены проблемой истощения природных ресурсов и занимаются выявлением альтернативных источников тепла и света. Такое решение позволит предупредить неизбежный для человечества энергетический кризис, а также надвигающуюся экологическую катастрофу.

Люди уже не представляют себе жизнь без электричества, и с каждым годом потребность в энергии все больше растет, в то время как запасы энергоресурсов таких нефть, газ, уголь стремительно сокращаются. У человечества не остается других вариантов, как использование альтернативных источников энергии. Одним из способов получения электроэнергии является преобразование солнечной энергии с помощью фотоэлементов. То, что можно использовать энергию солнца люди узнали относительно давно, но активно развивать начали лишь в последние 20 лет. За последние годы благодаря не прекращающимся исследованиям, использованию новейших материалов и креативных конструкторских решений удалось значительно увеличить производительность солнечных батарей. Многие полагают, что в будущем человечество сможет отказаться от традиционных способов получения электроэнергии в пользу солнечной энергии и получать ее с помощью солнечных электростанций.

Солнечная энергетика

Солнечная энергетика один из источников получения электроэнергии не традиционным способом, поэтому относится к альтернативным источникам энергии. Солнечная энергетика использует солнечное излучение и преобразовывает его в электричество или в другие виды энергии. Солнечная энергия является не только экологически чистым источником энергии, т.к. при преобразовании солнечной энергии не выделяется вредных побочных продуктов, но еще энергия солнца самовосстанавливающийся источник альтернативной энергии.

Как работает солнечная энергетика

Теоретически рассчитать, сколько можно получить энергии от потока солнечной энергии несложно, давно известно, что пройдя расстояние от Солнца до Земли и падая на поверхность площадью 1 м² под углом 90°, солнечный поток на входе в атмосферу несет в себе энергетический заряд равный 1367 Вт/м², это так называемая солнечная постоянная. Это идеальный вариант при идеальных условиях, которых как мы знаем добиться практически не возможно. Таким образом после прохождения атмосферы максимальный поток который можно получить будет на экваторе и будет составлять 1020 Вт/м², но среднесуточное значение которое мы сможем получить будет в 3 раза меньше из-за смены дня и ночи и изменения угла падения солнечного потока. А в умеренных широтах к смене дня и ночи прибавляется еще и смена времен года, а с ним и изменение длительности светового дня, поэтому в умеренных широтах количество получаемой энергии сократится еще в 2 раза.

Развитие и распространение солнечной энергетики

Как мы все знаем, в последние несколько лет развитие солнечной энергетики с каждым годом все больше набирает темпы, но давайте попробуем проследить динамику развития. В далеком 1985 году мировые мощности, использующие солнечную энергию, составляли всего лишь 0,021 ГВт. В 2005 году они уже составляли 1,656 ГВт. 2005 год считают переломным в развитии солнечной энергетике, именно с этого года люди началось активно интересоваться исследованиями и развитием электросистем работающих на солнечной энергии. Далее динамика не оставляет сомнений (2008г-15,5 ГВт, 2009-22,8 ГВт, 2010-40 ГВт, 2011-70 ГВт, 2012-108 ГВт, 2013-150 ГВт, 2014-203 ГВт). Пальму первенства в использовании солнечной энергии держат страны Евросоюза и США, в производственной и эксплуатационной сфере только в США и Германии заняты больше 100 тыс. людей в каждой. Также своими достижениями в освоении солнечной энергии могут похвастаться Италия, Испания и, конечно же, Китай, который если и не является лидером в эксплуатации солнечных элементов то, как производитель фотоэлементов из года в год наращивает темпы производства.

Достоинства и недостатки использования солнечной энергии

Достоинства: 1) экологичность-не загрязняет окружающую среду; 2) доступность-фотоэлементы доступны в продаже не только для промышленного использования, но и для создания частных мини солнечных электростанций; 3) неисчерпаемость и само восстанавливаемость источника энергии; 4) постоянно снижающаяся себестоимость производства электроэнергии.
Недостатки: 1) влияние на производительность погодных условий и времени суток; 2) для сохранения энергии необходимо аккумулировать энергию; 3) меньшая производительность в умеренных широтах из-за смены времен года; 4)значительный нагрев воздуха над солнечной электростанцией; 5) потребность периодически очищать поверхность фотоэлементов от загрязнения, а это проблематично из за огромных площадей, занимаемых под установку фотоэлементов; 6) также можно сказать об относительно высокой стоимости оборудования, хоть с каждым годом себестоимость снижается, пока говорить о дешевой солнечной энергии не приходится.

Перспективы развития солнечной энергетики

На сегодняшний день развитию солнечной энергетики пророчат большое будущее, с каждым годом все больше строятся новые солнечные электростанции, которые поражают своими масштабами и техническими решениями. Также не прекращаются научные исследования, направленные на увеличение КПД фотоэлементов. Ученые посчитали, что если покрыть сушу планеты Земля на 0,07%, с КПД фотоэлементов в 10%, то энергии хватит более чем на 100% обеспечения всех потребностей человечества. На сегодняшний день уже используются фотоэлементы с КПД в 30%. По исследовательским данным известно, что амбиции ученых обещают довести его до 85%.

Солнечные электростанции

Солнечные электростанции это сооружения задачей, которых является преобразовывать потоки солнечной энергии в электрическую энергию. Размеры солнечных электростанций могут быть различными, начиная от частных мини электростанций с несколькими солнечными панелями и заканчивая огромными, занимающими площади свыше 10 км².

Какие бывают солнечные электростанции

Со времени постройки первых солнечных электростанций прошло довольно много времени, за которое было осуществлено множество проектов и применено немало интересных конструкционных решений. Принято делить все солнечные электростанции на несколько типов:
1. Солнечные электростанции башенного типа.
2. Солнечные электростанции, где солнечные батарей представляют собой фотоэлементы.
3. Тарельчатые солнечные электростанции.
4. Параболические солнечные электростанции.
5. Солнечные электростанции солнечно-вакуумного типа.
6. Солнечные электростанции смешанного типа.

Солнечные электростанции башенного типа

Очень распространенный тип конструкции электростанции. Представляет собой высокую башенную конструкцию на вершине, которой расположен резервуар, с водой выкрашенный в черный цвет для лучшего притягивания отраженного солнечного света. Вокруг башни по кругу расположены большие зеркала площадью свыше 2 м², они все подключены к единой системе управления, которая следит за изменением угла наклона зеркал, что бы они всегда отражали солнечный свет и направляли его прямиком на резервуар с водой расположенный на верхушке башни. Таким образом, отраженный солнечный свет нагревает воду, которая образует пар, а затем этот пар с помощью насосов подается на турбогенератор где и происходит выработка электроэнергии. Температура нагрева бака может достигать 700 °C. Высота башни зависит от размеров и мощности солнечной электростанции и, как правило, начинается от 15 м, а высота самой большой на сегодняшний день составляет 140 м. Такой тип солнечных электростанций очень распространен и предпочитается многими странами за свой высокий КПД в 20%.

Солнечные электростанции фотоэлементного типа

Используют для преобразования солнечного потока в электричество фотоэлементы (солнечные батареи). Данный тип электростанций стал очень популярным благодаря возможности использования солнечных батарей небольшими блоками, что позволяет применять солнечные батареи для обеспечения электричеством, как частных домов, так и крупных промышленных объектов. Тем более что КПД с каждым годом растет и на сегодняшний день уже существуют фотоэлементы с КПД 30%.

Параболические солнечные электростанции

Данный тип солнечной электростанции имеет вид огромных спутниковых антенн, внутренняя сторона которых покрыта зеркальными пластинами. Принцип, по которому происходит преобразование энергии, похож с башенными станциями с небольшим отличием, параболическая форма зеркал обусловливает, что солнечные лучи, отражаясь от всей поверхности зеркала, концентрируются в центре, где расположен приемник с жидкостью, которая нагревается, образуя пар, который в свою очередь и является движущей силой для небольших генераторов.

Тарельчатые солнечные электростанции

Принцип работы и способ получения электроэнергии идентичен солнечным электростанциям башенного и параболического типа. Отличие составляет лишь конструктивные особенности. На стационарной конструкции немного похожей на гигантское металлическое дерево, на котором развешены круглые плоские зеркала, которые концентрируют солнечную энергию на приемнике.

Солнечные электростанции солнечно-вакуумного типа

Это очень необычный способ использования энергии солнца и разности температур. Конструкция электростанции состоит из покрытого стеклянной крышей участка земли круглой формы с башней в центре. Башня внутри полая, в ее основании расположены несколько турбин, которые вращаются благодаря возникающему из-за разности температур потоку воздуха. Через стеклянную крышу солнце нагревает землю и воздух внутри помещения, а с внешней средой здание сообщается трубой и так как вне помещения температура воздух значительно ниже, то создается воздушная тяга, которая увеличивается с ростом разницы температур. Таким образом, ночью турбины вырабатывают электроэнергии больше чем днем.

Солнечные электростанции смешанного типа

Это когда на солнечных электростанциях определенного типа в качестве вспомогательных элементов используют, например солнечные коллекторы для обеспечения объектов горячей водой и теплом или возможно использование одновременно на электростанции башенного типа участков фотоэлементов.

Солнечная энергетика развивается высокими темпами, люди, наконец, то всерьез задумались об альтернативных источниках энергии, что бы предупредить неизбежно надвигающийся энергетический кризис и экологическую катастрофу. Хоть лидерами в солнечной энергетике по-прежнему остаются США и Евросоюз, но все остальные мировые державы постепенно начинают перенимать и использовать опыт и технологии производства и использования солнечных электростанций. Можно не сомневаться, что рано или поздно солнечная энергия станет основным источником энергии на Земле.