Реакции цикла кребса. Цикл Кребса или как запомнить «золотое кольцо» биохимии Целый ананас и кусочек суфле

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбоновых кислот является "фокусом", в котором сходятся практически все метаболические пути.

Итак, образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА вступает в цикл Кребса. Данный цикл состоит из восьми последовательных реакций (рис. 91). Начинается цикл с конденсации ацетил-КоА с оксалоацетатом и образования лимонной кислоты. (Как будет видно ниже, в цикле окислению подвергается собственно не ацетил-КоА, а более сложное соединение - лимонная кислота (трикарбоновая кислота). )

Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и дскарбоксилирований (отщепление СО 2) теряет два углеродных атома и снова в цикле Кребса появляется оксалоацетат (четырехуглеродное соединение), т. е. в результате полного оборота цикла молекула ацетил-КоА сгорает до СО 2 и Н 2 О, а молекула оксалоацетата регенерируется. Ниже приводятся все восемь последовательных реакций (этапов) цикла Кребса.

В первой реакции, катализируемой ферментом цитратсинтазой, ацетил-КоА конденсируется с оксалоацетатом. В результате образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

Во второй реакции цикла образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту. Катализирует эти обратимые реакции гидратации-дегидратации фермент аконитат-гидратаза:

В третьей реакции, которая, по-видимому, лимитирует скорость цикла Кребса, изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы:


(В тканях существует два типа изоцитратдегидрогеназ: НАД- и НАДФ-зависимые. Установлено, что роль основного катализатора окисления изолимонной кислоты в цикле Кребса выполняет НАД-зависимая изоцитратдегидрогеназа. )

В ходе изоцитратдегидрогеназной реакции изолимонная кислота декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg 2+ или Мn 2+ .

В четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты до сукцинил-КоА. Механизм этой реакции сходен с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА. α-Кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в ходе реакции принимают участие пять коферментов: TДФ, амид липоевой кислоты, HS-KoA, ФАД и НАД. Суммарно данную реакцию можно написать так:

Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГДФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ1 за счет высокоэргической тиоэфирной связи сукцинил-КоА:


(Образовавшийся ГТФ отдает затем свою концевую фосфатную группу на АДФ, вследствие чего образуется АТФ. Образование высокоэргического нуклеозидтрифосфата в ходе сукцинил-КоА-синтетазной реакции - пример фосфорилирования на уровне субстрата. )

В шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком ковалентно связан кофермент ФАД:

В седьмой реакции образовавшаяся фумаровая кислота гидратируется под влиянием фермента фумаратгидратазы. Продуктом данной реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, - в ходе данной реакции образуется L-яблочная кислота:

Наконец, в восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление ("сгорание") одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов (или в цепи дыхательных ферментов), локализованной в митохондриях.

Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из четырех пар атомов водорода три пары переносятся через НАД на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуются три молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул АТФ. Одна пара атомов попадает в систему транспорта электронов через ФАД, - в результате образуются 2 молекулы АТФ. В ходе реакций цикла Кребса синтезируется также 1 молекула ГТФ, что равносильно 1 молекуле АТФ. Итак, при окислении ацетил-КоА в цикле Кребса образуется 12 молекул АТФ.

Как уже отмечалось, 1 молекула НАДН 2 (3 молекулы АТФ) образуется при окислительном декарбоксилирова-нии пирувата в ацетил-КоА. Так как при расщеплении одной молекулы глюкозы образуются две молекулы пирувата, то при окислении их до 2 молекул ацетил-КоА и последующих двух оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление одной молекулы пирувата до СО 2 и Н 2 O дает 15 молекул АТФ).

К этому надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 4 молекулы АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН 2 , которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции. Итого получим, что при расщеплении в тканях 1 молекулы глюкозы по уравнению: C 6 H 12 0 6 + 60 2 -> 6СO 2 + 6Н 2 O синтезируется 36 молекул АТФ, что способствует накоплению в макроэргических фосфатных связях аденозинтрифосфата 36 X 34,5 ~ 1240 кДж (или, по другим данным, 36 Х 38 ~ 1430 кДж) свободной энергии. Другими словами, из всей освобождающейся при аэробном окислении глюкозы свободной энергии (окодо 2840 кДж) до 50% ее аккумулируется в митохондриях в форме, которая может быть использована для выполнения различных физиологических функций. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем гликолиз. Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН 2 в дальнейшем при окислении дают не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН 2 не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицерофосфатного челночного механизма (рис. 92). Как видно на рисунке, цитоплазматический НАДН 2 сначала реагирует с цитоплазматическим дигидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализируется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидрогеназой.

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

  • Общее представление. Характеристика этапов ЦТК.
  • Конечные продукты ЦТК.
  • Биологическая роль ЦТК.
  • Регуляция ЦТК.
  • Нарушения работы ЦТК.

· ОБЩЕЕ ПРЕДСТАВЛЕНИЕ. ХАРАКТЕРИСТИКА ЭТАПОВ ЦТК

Цикл трикарбоновых кислот (ЦТК) представляет собой магистральный, циклический, метаболический путь , в котором происходит окисление активной уксусной кислоты и некоторых других соединений, образующихся при распаде углеводов, липидов, белков и который обеспечивает дыхательную цепь восстановленными коферментами.

ЦТК был открыт в 1937 году Г. Кребсом . Он обобщил имевшиеся к тому времени экспериментальные исследования и построил полную схему процесса.

Реакции ЦТК протекают в митохондриях в аэробных условиях .

В начале цикла (рис. 6) происходит конденсация активной уксусной кислоты (ацетил-КоА) со щавелево-уксусной кислотой (оксалоацетатом) с образованием лимонной кислоты (цитрата) . Эта реакция катализируется цитратсинтазой .

Далее цитрат изомеризуется в изоцитрат . Изомеризация цитрата осуществляется путем дегидратации с образованием цис-аконитата и его последующей гидратацией. Катализ обеих реакций обеспечивает аконитаза .

На 4-й стадии цикла происходит окислительное декарбоксилирование изоцитрата под действием изоцитратдегидрогеназы (ИЦДГ) с образованием a-кетоглутаровой кислоты , НАДН(Н +) или НАДФН(Н +) и СО 2. НАД-зависимая ИДГ локализована в митохондриях, а НАДФ-зависимый фермент присутствует в митохондриях и цитоплазме.

В ходе 5-й стадии осуществляется окислительное декарбоксилирование a-кетоглутарата с образованием активной янтарной кислоты (сукцинил-КоА) , НАДН(Н) и СО 2 . Этот процесс катализирует a-кетоглутаратдегидрогеназный комплекс , состоящий из трех ферментов и пяти коферментов. Ферменты: 1) a-кетоглутаратдегидрогеназа, связанная с коферментом ТПФ; 2) транссукцинилаза, коферментом которой является липоевая кислота;

3) дигидролипоилдегидрогеназа, связанная с ФАД. В работе a-кетоглутаратдегидрогеназ-

ного комплекса принимают участие также коферменты КоА-SH и НАД.



На 6-й стадии происходит расщепление макроэргической тиоэфирной связи сукцинил-КоА, сопряженное с фосфорилированием ГДФ. Образуются янтарная кислота (сукцинат) и ГТФ (на уровне субстратного фосфорилирования) . Реакция катализируется сукцинил-КоА-синтетазой (сукцинилтиокиназой) . Фосфорильная группа ГТФ может переноситься на АДФ: ГТФ +АДФ ® ГДФ + АТФ . Катализ реакции происходит при участии фермента нуклеозиддифосфокиназы.

В ходе 7-й стадии осуществляется окисление сукцината под действием сукцинатдегидрогеназы с образованием фумарата и ФАДН 2 .

На 8-й стадии фумаратгидратаза обеспечивает присоединение воды к фумаровой кислоте с образованием L - яблочной кислоты (L- малата) .

L-малат на 9-й стадии под действием малатдегидрогеназы окисляется до оксалоацетата , в реакции также образуется НАДН(Н +). На оксалоацетате метаболический путь замыкается и снова повторяется , приобретая циклический характер.

Рис. 6. Схема реакций цикла трикарбоновых кислот.

· КОНЕЧНЫЕ ПРОДУКТЫ ЦТК

Суммарное уравнение ЦТК имеет следующий вид:

// О

СН 3 – С~ S-КоА + 3 НАД + + ФАД + АДФ + Н 3 РО 4 + 3 Н 2 О ®

® 2 СО 2 + 3 НАДН(Н +) + ФАДН 2 + АТФ + КоА-SH

Таким образом конечными продуктами цикла (в расчете на 1 оборот) являются восстановленные коферменты - 3 НАДН(Н +) и 1 ФАДН 2 , 2 молекулы углекислого газа, 1 молекула АТФ и 1 молекула КоА- SH.

· БИОЛОГИЧЕСКАЯ РОЛЬ ЦТК

Цикл Кребса выполняет интеграционную, амфиболическую (т.е. катаболическую и анаболическую ), энергетическую и водороддонорную роль.

Интеграционная роль состоит в том, что ЦТК представляет собой конечный общий путь окисления топливных молекул – углеводов, жирных кислот и аминокислот.

В ЦТК происходит окисление ацетил-КоА – это катаболическая роль .

Анаболическая роль цикла заключается в том, что он поставляет промежуточные продукты для биосинтетических процессов. Например, оксалоацетат используется для синтеза аспартата, a-кетоглутарат – для образования глутамата , сукцинил-КоА – для синтеза гема .

Одна молекула АТФ образуется в ЦТК на уровне субстратного фосфорилирования – это энергетическая роль.

Водороддонорная рольсостоит в том, что ЦТК обеспечивает восстановленными коферментами НАДН(Н +) и ФАДН 2 дыхательную цепь, в которой происходит окисление водорода этих коферментов до воды, сопряженное с синтезом АТФ. При окислении одной молекулы ацетил-КоА в ЦТК образуются 3 НАДН(Н +) и 1 ФАДН 2

Выход АТФ при окислении ацетил-КоА составляет 12 молекул АТФ (1 АТФ в ЦТК на уровне субстратного фосфорилирования и 11 молекул АТФ при окислении 3 молекул НАДН(Н +) и 1 молекулы ФАДН 2 в дыхательной цепи на уровне окислительного фосфорилирования).

· РЕГУЛЯЦИЯ ЦТК

Скорость функционирования ЦТК точно подогнана к потребности клеток в АТФ, т.е. цикл Кребса сопряжен с дыхательной цепью, функционирующей только в аэробных условиях. Важной регуляторной реакцией цикла является синтез цитрата из ацетил-КоА и оксалоацетата, протекающий при участии цитратсинтазы . Высокий уровень АТФ ингибирует данный фермент. Вторая регуляторная реакция цикла – изоцитратдегидрогеназная . АДФ и НАД + активируют фермент, НАДН(Н +) и АТФ ингибируют . Третьей регуляторной реакцией является окислительное декарбоксилирование a-кетоглутарата . НАДН(Н +),сукцинил-КоА и АТФ ингибируют a-кетоглутаратдегидрогеназу.

· НАРУШЕНИЯ РАБОТЫ ЦТК

Нарушение функционирования ЦТК может быть связано:

С недостатком ацетил-КоА;

С недостатком оксалоацетата (он образуется при карбоксилировании пирувата, а последний в свою очередь при распаде углеводов). Несбалансированность рациона по углеводам влечет за собой включение ацетил-КоА в кетогенез (образование кетоновых тел), что приводит к кетозам;

С нарушением активности ферментов по пичине недостатка витаминов, входящих в состав соответствующих коферментов (недостаток витамина В 1 приводит к недостатку ТПФ и нарушению функционирования a-кетоглутаратдегидрогеназного комплекса; недостаток витамина В 2 ведет к недостатку ФАД и нарушению активности сукцинатдегидрогеназы; недостаток витамина В 3 влечет за собой недостаток кофермента ацилирования КоА-SH и нарушение активности a-кетоглутаратдегидрогеназного комплекса; недостаток витамина В 5 приводит к недостатку НАД и нарушению активности изоцитратдегидрогеназы, a-кетоглутаратдегидрогеназного комплекса и малатдегидрогеназы; недостаток липоевой кислоты также приводит к нарушению функционирования a-кетоглутаратдегидрогеназного комплекса);

С недостатком кислорода (нарушен синтез гемоглобина и функционирование дыхательной цепи, а накапливающийся НАДН(Н +) выступает в этом случае в роли аллостерического ингибитора изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназного комплекса)

· кОнТрольные вопросы

Я рассказывал о том, что это вообще такое, для чего цикл Кребса нужен и какое место в метаболизме он занимает. Теперь давайте приступим к самим реакциям этого цикла.

Сразу оговорюсь — лично для меня заучивание реакций было совершенно бессмысленным занятием до того, пока я не разобрал вышеуказанные вопросы. Но если вы уже разобрались с теорией, предлагаю перейти к практике.

Вы можете увидеть множество способов написания цикла Кребса. Чаще всего встречаются варианты вроде этого:

Но мне удобнее всего показался способ написания реакций из старого доброго учебника по биохимии от авторов Берёзова Т.Т. и Коровкина Б.В.

Первая реакция

Уже знакомые нам Ацетил-КоА и Оксалоацетат соединяются и превращаются в цитрат, то есть в лимонную кислоту .

Вторая реакция

Теперь берём лимонную кислоту и превращаем её изолимонную кислоту . Другое название этого вещества — изоцитрат.

На самом деле, эта реакция идёт несколько сложнее, через промежуточную стадию — образование цис-аконитовой кислоты. Но я решил упростить, чтобы вы получше запомнили. При необходимости вы сможете добавить сюда недостающую ступень, если будете помнить всё остальное.

По сути, две функциональные группы просто поменялись местами.

Третья реакция

Итак, у нас получилась изолимонная кислота. Теперь её нужно декарбоксилировать (то есть отщипнуть COOH) и дегидрировать (то есть отщипнуть H) . Получившееся вещество — это a-кетоглутарат .

Эта реакция примечательна тем, что здесь образуется комплекс HAДH 2 . Это значит, что переносчик НАД подхватывает водород, чтобы запустить дыхательную цепь.

Мне нравится вариант реакций Цикла Кребса в учебнике Берёзова и Коровкина именно тем, что сразу отлично видно атомы и функциональные группы, которые участвуют в реакциях.

Четвёртая реакция

Снова как часы работает никотинАмидАденинДинуклеотид, то есть НАД . Это славный переносчик появляется здесь, как и в прошлом шаге, чтобы захватить водород и унести его в дыхательную цепь.

Кстати, получившееся вещество — сукцинил-КоА , не должно вас пугать. Сукцинат — это другое название янтарной кислоты, хорошо знакомой вам со времён биоорганической химии. Сукцинил-Коа — это соединение янтарной кислоты с коэнзимом-А. Можно сказать, что это эфир янтарной кислоты.

Пятая реакция

В прошлом шаге мы говорили, что сукцинил-КоА — это эфир янтарной кислоты. А теперь мы получим саму янтарную кислоту , то есть сукцинат, из сукцинила-КоА. Крайне важный момент: именно в этой реакции происходит субстратное фосфорилирование .

Фосфорилирование вообще (оно бывает окислительное и субстратное) — это добавление фосфорной группы PO 3 к ГДФ или АТФ, чтобы получить полноценный ГТФ , или соответственно, АТФ. Субстратное отличается тем, что эта самая фосфорная группа отрывается от какого-либо вещества, её содержащую. Ну проще говоря, она переносится с СУБСТРАТА на ГДФ или АДФ. Поэтому и называется — «субстратное фосфорилирование».

Ещё раз: на момент начала субстратного фосфорилирования у нас имеется дифосфатная молекула — гуанозинДифосфат или аденозинДифосфат. Фосфорилирование заключается в том, что молекула с двумя остатками фосфорной кислоты — ГДФ или АДФ «достраивается» до молекулы с тремя остатками фосфорной кислоты, чтобы получились гуанозинТРИфосфат или аденозинТРИфосфат. Этот процесс происходит во время превращения сукцинила-КоА в сукцинат (то есть, в янтарную кислоту).

На схеме вы можете увидеть буквы Ф (н). Это значит «неорганический фосфат». Неорганический фосфат переходит от субстрата на ГДФ, чтобы в продуктах реакции был хороший, полноценный ГТФ. Теперь давайте посмотрим на саму реакцию:

Шестая реакция

Следующее превращение. На сей раз янтарная кислота, которую мы получили в прошлом этапе, превратится в фумарат , обратите внимание на новую двойную связь.

На схеме отлично видно, как в реакции участвует ФАД : этот неутомимый переносчик протонов и электронов подхватывает водород и утаскивает его непосредственно в дыхательную цепь.

Седьмая реакция

Мы уже на финишной прямой. Предпоследняя стадия Цикла Кребса — это реакция превращения фумарата в L-малат. L-малат — это другое название L-яблочной кислоты , знакомой ещё с курса биоорганической химии.

Если вы посмотрите на саму реакцию, вы увидите, что, во-первых, она проходит в обе стороны, а во-вторых, её суть — гидратирование. То есть фумарат просто присоединяет к себе молекулу воды, в итоге получается L-яблочная кислота.

Восьмая реакция

Последняя реакция Цикла Кребса — это окисление L-яблочной кислоты до оксалоацетата, то есть до щавелевоуксусной кислоты . Как вы поняли, «оксалоацетат» и «щавелевоуксусная кислота» — это синонимы. Вы, наверное, помните, что щавелевоуксусная кислота является компонентом первой реакции цикла Кребса.

Здесь же отмечаем особенность реакции: образование НАДH 2 , который понесёт электроны в дыхательную цепь. Не забудьте также реакции 3,4 и 6, там также образуются переносчики электронов и протонов для дыхательной цепи.

Как видите, я специально выделил красным цветом реакции, в ходе которых образуются НАДH и ФАДH2. Это очень важные вещества для дыхательной цепи. Зелёным я выделил реакцию, в рамках которой происходит субстратное фосфорилирование, и получается ГТФ.

Как это всё запомнить?

На самом деле, не так уж и сложно. Полностью прочитав две моих статьи, а также ваш учебник и лекции, вам нужно просто потренироваться писать эти реакции. Я рекомендую запомнить цикл Кребса блоками по 4 реакции. Напишите эти 4 реакции несколько раз, для каждой подбирая ассоциацию, подходящую именно вашей памяти.

Например, мне сразу очень легко запомнилась вторая реакция, в которой из лимонной кислоты (она, думаю, всем знакома с детства) образуется изолимонная кислота.

Вы можете так же использовать мнемонические запоминалки, такие как: «Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует ряду - цитрат, цис -аконитат, изоцитрат, альфа-кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат». Есть ещё куча подобных.

Но, если честно, мне не нравились такие стихи практически никогда. По-моему, проще запомнить саму последовательность реакций. Мне отлично помогло разделение цикла Кребса на две части, каждую из которых я тренировался писать по несколько раз в час. Как правило, это происходило на парах вроде психологии или биоэтики. Это весьма удобно — не отвлекаясь от лекции, вы можете потратить буквально минутку, написав реакции так, как вы их запомнили, а затем сверить с правильным вариантом.

Кстати, в некоторых вузах на зачётах и экзаменах по биохимии преподаватели не требуют знания самих реакций. Нужно знать только что такое цикл Кребса, где он происходит, в чём его особенности и значение, и, разумеется, саму цепочку превращений. Только цепочку можно называть без формул, используя лишь названия веществ. Такой подход не лишён смысла, на мой взгляд.

Надеюсь, моё руководство по циклу трикарбоновых кислот вам помогло. А я хочу напомнить, что эти две статьи не являются полноценной заменой вашим лекциям и учебникам. Я написал их лишь для того, чтобы вы примерно понимали, что такое цикл Кребса. Если вы вдруг увидели какую-то ошибку в моём руководстве, пожалуйста, отпишитесь о ней в комментариях. Спасибо за внимание!

Этот метаболический путь назван именем открывшего его автора - Г. Кребса, получившего (совместно с Ф. Липманом) за данное открытие в 1953 г. Нобелевскую премию. В цикле лимонной кислоты улавливается большая часть свободной энергии , образующейся при распаде белков, жиров и углеводов пищи. Цикл Кребса - центральный путь обмена веществ.

Образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА в матриксе митохондрий включается в цепь последовательных реакций окисления. Таких реакций восемь.

1-я реакция - образование лимонной кислоты . Образование цитрата происходит путем конденсации ацетильного остатка ацетил-КоА с оксалацетатом (ОА) при помощи фермента цитратсинтазы (с участием воды):

Данная реакция практически необратима, поскольку при этом распадается богатая энергией тиоэфирная связь ацетил~S-КоА.

2-я реакция - образование изолимонной кислоты. Эта реакция катализируется железосодержащим (Fe - негеминовое) ферментом - аконитазой. Реакция протекает через стадию образования цис -аконитовой кислоты (лимонная кислота подвергается дегидратации с образованием цис -аконитовой кислоты, которая, присоединяя молекулу воды, превращается в изолимонную).

3-я реакция - дегидрирование и прямое декарбоксилирование изолимонной кислоты. Реакция катализируется НАД + -зависимым ферментом изоцитратдегидрогеназой. Фермент нуждается в присутствии ионов марганца (или магния). Являясь по своей природе аллостерическим белком, изоцитратдегидрогеназа нуждается в специфическом активаторе - АДФ.

4-я реакция - окислительное декарбоксилирование α-кетоглутаровой кислоты. Процесс катализируется α-кетоглутаратдегидрогеназой - ферментным комплексом, по структуре и механизму действия похожим на пируватдегидрогеназный комплекс. В его состав входят те же коферменты: ТПФ, ЛК и ФАД - собственные коферменты комплекса; КоА-SH и НАД + - внешние коферменты.

5-я реакция - субстратное фосфорилирование. Суть реакции заключается в переносе богатой энергией связи сукцинил-КоА (макроэргическое соединение) на ГДФ с участием фосфорной кислоты - при этом образуется ГТФ, молекула которого вступает в реакцию перефосфорилирования с АДФ - образуется АТФ.

6-я реакция - дегидрирование янтарной кислоты сукцинатдегидрогеназой. Фермент осуществляет прямой перенос водорода с субстрата (сукцината) на убихинон внутренней мембраны митохондрий. Сукцинатдегидрогеназа - II комплекс дыхательной цепи митохондрий. Коферментом в этой реакции является ФАД.

7-я реакция - образование яблочной кислоты ферментом фумаразой. Фумараза (фумаратгидратаза) гидратирует фумаровую кислоту - при этом образуется яблочная кислота, причем ее L -форма, так как фермент обладает стереоспецифичностью.


8-я реакция - образование оксалацетата. Реакция катализируется малатдегидрогеназой , коферментом которой служит НАД + . Образовавшийся под действием фермента оксалацетат вновь включается в цикл Кребса и весь циклический процесс повторяется.

Последние три реакции обратимы, но поскольку НАДН?Н + захватывается дыхательной цепью, равновесие реакции сдвигается вправо, т.е. в сторону образования оксалацетата . Как видно, за один оборот цикла происходит полное окисление, “сгорание”, молекулы ацетил-КоА. В ходе цикла образуются восстановленные формы никотинамидных и флавиновых коферментов, которые окисляются в дыхательной цепи митохондрий. Таким образом, цикл Кребса находится в тесной взаимосвязи с процессом клеточного дыхания.

Функции цикла трикарбоновых кислот многообразны:

· Интегративная - цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.

· Анаболическая - субстраты цикла используются для синтеза многих других соединений: оксалацетат используется для синтеза глюкозы (глюконеогенез) и синтеза аспарагиновой кислоты, ацетил-КоА - для синтеза гема, α-кетоглутарат - для синтеза глютаминовой кислоты, ацетил-КоА - для синтеза жирных кислот, холестерола, стероидных гормонов, ацетоновых тел и др.

· Катаболическая - в этом цикле завершают свой путь продукты распада глюкозы, жирных кислот, кетогенных аминокислот - все они превращаются в ацетил-КоА; глутаминовая кислота - в α-кетоглутаровую; аспарагиновая - в оксалоацетат и пр.

· Собственно энергетическая - одна из реакций цикла (распад сукцинил-КоА) является реакцией субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).

· Водороддонорная - при участии трех НАД + -зависимых дегидрогеназ (дегидрогеназ изоцитрата, α-кетоглутарата и малата) и ФАД-зависимой сукцинатдегидрогеназы образуются 3 НАДН?Н + и 1 ФАДН 2 . Эти восстановленные коферменты являются донорами водорода для дыхательной цепи митохондрий, энергия переноса водородов используется для синтеза АТФ.

· Анаплеротическая - восполняющая. Значительные количества субстратов цикла Кребса используются для синтеза разных соединений и покидают цикл. Одной из реакций, восполняющих эти потери, является реакция, катализируемая пируваткарбоксилазой.

Скорость реакция цикла Кребса определяется энергетическими потребностями клетки

Скорость реакций цикла Кребса коррелирует с интенсивностью процесса тканевого дыхания и связанного с ним окислительного фосфорилирования - дыхательный контроль. Все метаболиты, отражающие достаточное обеспечение клетки энергией являются ингибиторами цикла Кребса. Увеличение соотношения АТФ/АДФ - показатель достаточного энергообеспечении клетки и снижает активность цикла. Увеличение соотношения НАД + / НАДН, ФАД/ ФАДН 2 указывает на энергодефицит и является сигналом ускорения процессов окисления в цикле Кребса.

Основное действие регуляторов направлено на активность трех ключевых ферментов: цитратсинтазы, изоцитратдегидрогеназы и a-кетоглутаратдегидрогеназы. Аллостерическими ингибиторами цитратсинтазы являются АТФ, жирные кислоты. В некоторых клетках роль ее ингибиторов играют цитрат и НАДН. Изоцитратдегидрогеназа аллостерически активируется АДФ и ингибируется при повышении уровня НАДН+Н + .

Рис. 5.15. Цикл трикарбоновых кислот (цикл Кребса)

Последний является ингибитором и a-кетоглутаратдегидрогена зы, активность которой снижается также при повышении уровня сукцинил-КоА.

Активность цикла Кребса во многом зависит от обеспеченности субстратами. Постоянная “утечка” субстратов из цикла (например, при аммиачном отравлении) может вызывать значительные нарушения энергообеспеченности клеток.

Пентозофосфатный путь окисления глюкозы обслуживает восстановительные синтезы в клетке.

Как видно из названия, в этом пути образуются столь необходимые клетке пентозофосфаты . Поскольку образование пентоз сопровождается окислением и отщеплением первого углеродного атома глюкозы, то этот путь называется также апотомическим (apex - вершина).

Пентозофосфатный путь можно разделить две части: окислительную и неокислительную. В окислительной части, включающей три реакции, образуются НАДФН?Н + и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8 атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

· Окислительная часть . Первая реакция -дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназойс образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН?Н + (НАДФ + - кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция - гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции - 6-фосфоглюконат.

Третья реакция - дегидрирование и декарбоксилирование 6-фосфоглюконолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ + . В ходе реакции восстанавливается кофермент и отщепляется С-1 глюкозы с образованием рибулозо-5-фосфата.

· Неокислительная часть . В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы (рис5.16)

Рис.5.16.Окислительная часть пентозофосфатного пути (F-вариант)

Рибулозо-5-фосфат может изомеризоваться (фермент - кетоизомераза ) в рибозу-5-фосфат и эпимеризоваться (фермент - эпимераза ) в ксилулозо-5-фосфат. Далее следуют два типа реакций: транскетолазная и трансальдолазная.

Транскетолаза (кофермент - тиаминпирофосфат) отщепляет двухуглеродный фрагмент и переносит его на другие сахара (см. схему). Трансальдолаза переносит трехуглеродные фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это - транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фосфата на рибозо-5-фосфат.

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА образуются эритрозо-4-фосфат и фруктозо-6-фосфат.Это F-вариант пентозофосфатного пути. Он характерен для жировой ткани.

Однако реакции могут идти и по другому пути(рис.5.17).Этот путь обозначается как L-вариант. Он протекает в печени и других органах. В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Рис.5.17. Пентозофосфатный (апотомический) путь обмена глюкозы (октулозный, или L-вариант)

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА.

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:

Глюкозо-6-Ф + 7Н 2 О + 12НАДФ + 5 Пентозо-5-Ф + 6СО 2 + 12 НАДФН?Н + + Фн.